Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from PIL import Image | |
from transformers import DPTFeatureExtractor | |
from transformers import DPTForDepthEstimation | |
class DepthDetector: | |
def __init__(self, model_path=None): | |
if model_path is not None: | |
self.model_path = model_path | |
else: | |
self.model_path = "Intel/dpt-hybrid-midas" | |
self.model = DPTForDepthEstimation.from_pretrained(self.model_path) | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.feature_extractor = DPTFeatureExtractor.from_pretrained(self.model_path) | |
def __call__(self, image): | |
self.model.to(self.device) | |
H, W, C = image.shape | |
inputs = self.feature_extractor(images=image, return_tensors="pt") | |
inputs["pixel_values"] = inputs["pixel_values"].to(self.device) | |
outputs = self.model(**inputs) | |
predicted_depth = outputs.predicted_depth | |
outputs = predicted_depth.squeeze().cpu().numpy() | |
if len(outputs.shape) == 2: | |
output = outputs[np.newaxis, :, :] | |
else: | |
output = outputs | |
formatted = (output * 255 / np.max(output)).astype("uint8") | |
depth_image = Image.fromarray(formatted[0, ...]).resize((W, H)) | |
self.model.to("cpu") | |
return depth_image | |