Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from PIL import Image | |
class NormalDetector: | |
def __init__(self): | |
self.model_path = "hugoycj/DSINE-hub" | |
self.dsine = torch.hub.load(self.model_path, "DSINE", trust_repo=True) | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def __call__(self, image): | |
self.dsine.model.to(self.device) | |
self.dsine.model.pixel_coords = self.dsine.model.pixel_coords.to(self.device) | |
H, W, C = image.shape | |
normal = self.dsine.infer_pil(image)[0] # Output shape: (H, W, 3) | |
normal = (normal + 1.0) / 2.0 # Convert values to the range [0, 1] | |
normal = (normal * 255).cpu().numpy().astype(np.uint8).transpose(1, 2, 0) | |
normal_img = Image.fromarray(normal).resize((W, H)) | |
self.dsine.model.to("cpu") | |
self.dsine.model.pixel_coords = self.dsine.model.pixel_coords.to("cpu") | |
return normal_img | |
if __name__ == "__main__": | |
from diffusers.utils import load_image | |
image = load_image( | |
"https://qhstaticssl.kujiale.com/image/jpeg/1716177580588/9AAA49344B9CE33512C4EBD0A287495F.jpg" | |
) | |
image = np.asarray(image) | |
normal_detector = NormalDetector() | |
normal_image = normal_detector(image) | |
normal_image.save("normal_image.jpg") | |