Spaces:
Runtime error
Runtime error
yichen-purdue
commited on
Commit
•
2e7060e
1
Parent(s):
62745e5
update the exmaples
Browse files- .gitignore +2 -0
- app.py +22 -3
- imgs/bike.png +0 -0
- imgs/cloud.png +0 -0
- imgs/convert_rgb_alpha.py +14 -0
- imgs/flower_mask.png +0 -0
- imgs/human2.png +0 -0
- imgs/man.png +0 -0
- imgs/plant1.png +0 -0
- imgs/test.py +14 -0
- imgs/woman.png +0 -0
- models/Loss/Loss.py +8 -8
- models/SSN.py +2 -1
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
**/*.*.pyc
|
2 |
+
**/*.pyc
|
app.py
CHANGED
@@ -37,6 +37,7 @@ def resize(img, size):
|
|
37 |
newh = int(h / w * size)
|
38 |
|
39 |
resized_img = cv2.resize(img, (neww, newh), interpolation=cv2.INTER_AREA)
|
|
|
40 |
if len(img.shape) != len(resized_img.shape):
|
41 |
resized_img = resized_img[..., none]
|
42 |
|
@@ -62,7 +63,7 @@ def padding_mask(rgba_input: np.array):
|
|
62 |
:returns: H x W x 4 padded RGBAD
|
63 |
|
64 |
"""
|
65 |
-
padding =
|
66 |
padding_size = 256 - padding * 2
|
67 |
|
68 |
h, w = rgba_input.shape[:2]
|
@@ -74,6 +75,7 @@ def padding_mask(rgba_input: np.array):
|
|
74 |
h_min, h_max = hh.min(), hh.max()
|
75 |
w_min, w_max = ww.min(), ww.max()
|
76 |
|
|
|
77 |
# if the area already has enough padding
|
78 |
if h_max - h_min < padding_size and w_max - w_min < padding_size:
|
79 |
return rgba_input
|
@@ -83,8 +85,12 @@ def padding_mask(rgba_input: np.array):
|
|
83 |
|
84 |
padded_rgba = resize(rgba_input, padding_size)
|
85 |
new_h, new_w = padded_rgba.shape[:2]
|
|
|
|
|
|
|
86 |
|
87 |
-
padding_output[
|
|
|
88 |
|
89 |
return padding_output
|
90 |
|
@@ -108,6 +114,8 @@ def render_btn_fn(mask, ibl):
|
|
108 |
mask = mask / 255.0
|
109 |
ibl = ibl/ 255.0
|
110 |
|
|
|
|
|
111 |
# smoothing ibl
|
112 |
ibl = cv2.GaussianBlur(ibl, (11, 11), 0)
|
113 |
|
@@ -157,13 +165,16 @@ def gamma_change(x):
|
|
157 |
ret, shadow = shadow_composite(cur_rgba, cur_shadow, cur_intensity, cur_gamma)
|
158 |
return ret, shadow
|
159 |
|
|
|
|
|
|
|
160 |
|
161 |
ibl_h = 128
|
162 |
ibl_w = ibl_h * 2
|
163 |
|
164 |
with gr.Blocks() as demo:
|
165 |
with gr.Row():
|
166 |
-
mask_input = gr.Image(shape=
|
167 |
ibl_input = gr.Sketchpad(shape=(ibl_w, ibl_h), image_mode="L", label="IBL", tool='sketch', invert_colors=True)
|
168 |
output = gr.Image(shape=(256, 256), height=256, width=256, image_mode="RGB", label="Output")
|
169 |
shadow_output = gr.Image(shape=(256, 256), height=256, width=256, image_mode="L", label="Shadow Layer")
|
@@ -173,6 +184,14 @@ with gr.Blocks() as demo:
|
|
173 |
gamma_slider = gr.Slider(1.0, 4.0, value=DEFAULT_GAMMA, step=0.1, label="Gamma", info="Gamma correction for shadow")
|
174 |
render_btn = gr.Button(label="Render")
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
render_btn.click(render_btn_fn, inputs=[mask_input, ibl_input], outputs=[output, shadow_output])
|
177 |
intensity_slider.release(intensity_change, inputs=[intensity_slider], outputs=[output, shadow_output])
|
178 |
gamma_slider.release(gamma_change, inputs=[gamma_slider], outputs=[output, shadow_output])
|
|
|
37 |
newh = int(h / w * size)
|
38 |
|
39 |
resized_img = cv2.resize(img, (neww, newh), interpolation=cv2.INTER_AREA)
|
40 |
+
|
41 |
if len(img.shape) != len(resized_img.shape):
|
42 |
resized_img = resized_img[..., none]
|
43 |
|
|
|
63 |
:returns: H x W x 4 padded RGBAD
|
64 |
|
65 |
"""
|
66 |
+
padding = 40
|
67 |
padding_size = 256 - padding * 2
|
68 |
|
69 |
h, w = rgba_input.shape[:2]
|
|
|
75 |
h_min, h_max = hh.min(), hh.max()
|
76 |
w_min, w_max = ww.min(), ww.max()
|
77 |
|
78 |
+
|
79 |
# if the area already has enough padding
|
80 |
if h_max - h_min < padding_size and w_max - w_min < padding_size:
|
81 |
return rgba_input
|
|
|
85 |
|
86 |
padded_rgba = resize(rgba_input, padding_size)
|
87 |
new_h, new_w = padded_rgba.shape[:2]
|
88 |
+
|
89 |
+
padding_h = (256 - new_h) // 2
|
90 |
+
padding_w = (256 - new_w) // 2
|
91 |
|
92 |
+
padding_output[padding_h:padding_h+new_h, padding_w:padding_w+new_w, :] = padded_rgba
|
93 |
+
padding_output = np.clip(padding_output, 0.0, 1.0)
|
94 |
|
95 |
return padding_output
|
96 |
|
|
|
114 |
mask = mask / 255.0
|
115 |
ibl = ibl/ 255.0
|
116 |
|
117 |
+
mask = np.clip(mask, 0.0, 1.0)
|
118 |
+
|
119 |
# smoothing ibl
|
120 |
ibl = cv2.GaussianBlur(ibl, (11, 11), 0)
|
121 |
|
|
|
165 |
ret, shadow = shadow_composite(cur_rgba, cur_shadow, cur_intensity, cur_gamma)
|
166 |
return ret, shadow
|
167 |
|
168 |
+
def update_input(mask):
|
169 |
+
return mask
|
170 |
+
|
171 |
|
172 |
ibl_h = 128
|
173 |
ibl_w = ibl_h * 2
|
174 |
|
175 |
with gr.Blocks() as demo:
|
176 |
with gr.Row():
|
177 |
+
mask_input = gr.Image(shape=None, width=256, height=256,image_mode="RGBA", label="RGBA")
|
178 |
ibl_input = gr.Sketchpad(shape=(ibl_w, ibl_h), image_mode="L", label="IBL", tool='sketch', invert_colors=True)
|
179 |
output = gr.Image(shape=(256, 256), height=256, width=256, image_mode="RGB", label="Output")
|
180 |
shadow_output = gr.Image(shape=(256, 256), height=256, width=256, image_mode="L", label="Shadow Layer")
|
|
|
184 |
gamma_slider = gr.Slider(1.0, 4.0, value=DEFAULT_GAMMA, step=0.1, label="Gamma", info="Gamma correction for shadow")
|
185 |
render_btn = gr.Button(label="Render")
|
186 |
|
187 |
+
with gr.Row():
|
188 |
+
gr.Examples(
|
189 |
+
examples=[['imgs/woman.png'],['imgs/man.png'], ['imgs/plant1.png'], ['imgs/human2.png'], ['imgs/cloud.png']],
|
190 |
+
fn=update_input,
|
191 |
+
inputs=[mask_input],
|
192 |
+
outputs=mask_input
|
193 |
+
)
|
194 |
+
|
195 |
render_btn.click(render_btn_fn, inputs=[mask_input, ibl_input], outputs=[output, shadow_output])
|
196 |
intensity_slider.release(intensity_change, inputs=[intensity_slider], outputs=[output, shadow_output])
|
197 |
gamma_slider.release(gamma_change, inputs=[gamma_slider], outputs=[output, shadow_output])
|
imgs/bike.png
ADDED
imgs/cloud.png
ADDED
imgs/convert_rgb_alpha.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
rgb_file = 'fg-1-rgb.png'
|
5 |
+
alpha_file = 'fg-1-alpha.png'
|
6 |
+
output_file = 'fg-1-rgba.png'
|
7 |
+
|
8 |
+
rgb = plt.imread(rgb_file)
|
9 |
+
alpha = plt.imread(alpha_file)
|
10 |
+
|
11 |
+
print(rgb.shape, alpha.shape)
|
12 |
+
|
13 |
+
rgba = np.concatenate([rgb[..., :3], alpha[..., 0:1]], axis=2)
|
14 |
+
plt.imsave(output_file, rgba)
|
imgs/flower_mask.png
ADDED
imgs/human2.png
ADDED
imgs/man.png
ADDED
imgs/plant1.png
ADDED
imgs/test.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
rgb = 'woman.png'
|
6 |
+
mask = 'woman_mask.png'
|
7 |
+
ofile = 'test1.png'
|
8 |
+
|
9 |
+
rgb = plt.imread(rgb)
|
10 |
+
mask = plt.imread(mask)
|
11 |
+
|
12 |
+
output = np.concatenate([rgb[..., :3], mask[..., :1]], axis=2)
|
13 |
+
plt.imsave(ofile, output)
|
14 |
+
|
imgs/woman.png
ADDED
models/Loss/Loss.py
CHANGED
@@ -10,7 +10,7 @@ import cv2
|
|
10 |
# from vgg19_loss import VGG19Loss
|
11 |
# import pytorch_ssim
|
12 |
|
13 |
-
from .vgg19_loss import VGG19Loss
|
14 |
from . import pytorch_ssim
|
15 |
from abc import ABC, abstractmethod
|
16 |
from collections import OrderedDict
|
@@ -96,15 +96,15 @@ class hierarchical_ssim_loss(abs_loss):
|
|
96 |
return total_loss/b
|
97 |
|
98 |
|
99 |
-
class vgg_loss(abs_loss):
|
100 |
-
|
101 |
-
|
102 |
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
|
109 |
|
110 |
class grad_loss(abs_loss):
|
|
|
10 |
# from vgg19_loss import VGG19Loss
|
11 |
# import pytorch_ssim
|
12 |
|
13 |
+
# from .vgg19_loss import VGG19Loss
|
14 |
from . import pytorch_ssim
|
15 |
from abc import ABC, abstractmethod
|
16 |
from collections import OrderedDict
|
|
|
96 |
return total_loss/b
|
97 |
|
98 |
|
99 |
+
# class vgg_loss(abs_loss):
|
100 |
+
# def __init__(self):
|
101 |
+
# self.vgg19_ = VGG19Loss()
|
102 |
|
103 |
|
104 |
+
# def loss(self, gt_img, pred_img):
|
105 |
+
# b, c, h, w = gt_img.shape
|
106 |
+
# v = self.vgg19_(gt_img, pred_img, pred_img.device)
|
107 |
+
# return v/b
|
108 |
|
109 |
|
110 |
class grad_loss(abs_loss):
|
models/SSN.py
CHANGED
@@ -97,7 +97,8 @@ class SSN(abs_model):
|
|
97 |
assert len(x[k].shape) == 2, '{} should be 2D tensor'.format(k)
|
98 |
|
99 |
|
100 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
101 |
|
102 |
mask = torch.tensor(x['mask'])[None, None, ...].float().to(device)
|
103 |
ibl = torch.tensor(x['ibl'])[None, None, ...].float().to(device)
|
|
|
97 |
assert len(x[k].shape) == 2, '{} should be 2D tensor'.format(k)
|
98 |
|
99 |
|
100 |
+
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
101 |
+
device = torch.device('cpu')
|
102 |
|
103 |
mask = torch.tensor(x['mask'])[None, None, ...].float().to(device)
|
104 |
ibl = torch.tensor(x['ibl'])[None, None, ...].float().to(device)
|