Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import transforms | |
import numpy as np | |
from .SSN import Conv, Conv2DMod, Decoder, Up | |
from .attention import AttentionBlock | |
from .blocks import ResBlock, Res_Type, get_activation | |
class Attention_Encoder(nn.Module): | |
def __init__(self, in_channels=3, mid_act='gelu', dropout=0.0, num_heads=8, resnet=True): | |
super(Attention_Encoder, self).__init__() | |
self.in_conv = Conv(in_channels, 32-in_channels, stride=1, activation=mid_act, resnet=resnet) | |
self.down_32_64 = Conv(32, 64, stride=2, activation=mid_act, resnet=resnet) | |
self.down_64_64_1 = Conv(64, 64, activation=mid_act, resnet=resnet) | |
self.down_64_128 = Conv(64, 128, stride=2, activation=mid_act, resnet=resnet) | |
self.down_128_128_1 = Conv(128, 128, activation=mid_act, resnet=resnet) | |
self.down_128_256 = Conv(128, 256, stride=2, activation=mid_act, resnet=resnet) | |
self.down_256_256_1 = Conv(256, 256, activation=mid_act, resnet=resnet) | |
self.down_256_256_1_attn = AttentionBlock(256, num_heads) | |
self.down_256_512 = Conv(256, 512, stride=2, activation=mid_act, resnet=resnet) | |
self.down_512_512_1 = Conv(512, 512, activation=mid_act, resnet=resnet) | |
self.down_512_512_1_attn = AttentionBlock(512, num_heads) | |
self.down_512_512_2 = Conv(512, 512, activation=mid_act, resnet=resnet) | |
self.down_512_512_2_attn = AttentionBlock(512, num_heads) | |
self.down_512_512_3 = Conv(512, 512, activation=mid_act, resnet=resnet) | |
self.down_512_512_3_attn = AttentionBlock(512, num_heads) | |
def forward(self, x): | |
x1 = self.in_conv(x) # 32 x 256 x 256 | |
x1 = torch.cat((x, x1), dim=1) | |
x2 = self.down_32_64(x1) | |
x3 = self.down_64_64_1(x2) | |
x4 = self.down_64_128(x3) | |
x5 = self.down_128_128_1(x4) | |
x6 = self.down_128_256(x5) | |
x7 = self.down_256_256_1(x6) | |
x7 = self.down_256_256_1_attn(x7) | |
x8 = self.down_256_512(x7) | |
x9 = self.down_512_512_1(x8) | |
x9 = self.down_512_512_1_attn(x9) | |
x10 = self.down_512_512_2(x9) | |
x10 = self.down_512_512_2_attn(x10) | |
x11 = self.down_512_512_3(x10) | |
x11 = self.down_512_512_3_attn(x11) | |
return x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1 | |
class Attention_Decoder(nn.Module): | |
def __init__(self, out_channels=3, mid_act='gelu', out_act='sigmoid', resnet = True, num_heads=8): | |
super(Attention_Decoder, self).__init__() | |
input_channel = 512 | |
fea_dim = 100 | |
self.to_style1 = nn.Linear(in_features=fea_dim, out_features=input_channel) | |
self.up_16_16_1 = Conv(input_channel, 256, activation=mid_act, style=False, resnet=resnet) | |
self.up_16_16_1_attn = AttentionBlock(256, num_heads=num_heads) | |
self.up_16_16_2 = Conv(768, 512, activation=mid_act, resnet=resnet) | |
self.up_16_16_2_attn = AttentionBlock(512, num_heads=num_heads) | |
self.up_16_16_3 = Conv(1024, 512, activation=mid_act, resnet=resnet) | |
self.up_16_16_3_attn = AttentionBlock(512, num_heads=num_heads) | |
self.up_16_32 = Up(1024, 256, activation=mid_act, resnet=resnet) | |
self.to_style2 = nn.Linear(in_features=fea_dim, out_features=512) | |
self.up_32_32_1 = Conv(512, 256, activation=mid_act, style=False, resnet=resnet) | |
self.up_32_32_1_attn = AttentionBlock(256, num_heads=num_heads) | |
self.up_32_64 = Up(512, 128, activation=mid_act, resnet=resnet) | |
self.to_style3 = nn.Linear(in_features=fea_dim, out_features=256) | |
self.up_64_64_1 = Conv(256, 128, activation=mid_act, style=False, resnet=resnet) | |
self.up_64_128 = Up(256, 64, activation=mid_act, resnet=resnet) | |
self.to_style4 = nn.Linear(in_features=fea_dim, out_features=128) | |
self.up_128_128_1 = Conv(128, 64, activation=mid_act, style=False, resnet=resnet) | |
self.up_128_256 = Up(128, 32, activation=mid_act, resnet=resnet) | |
self.out_conv = Conv(64, out_channels, activation=out_act) | |
self.out_act = get_activation(out_act) | |
def forward(self, x): | |
x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1 = x | |
y = self.up_16_16_1(x11) # 256 x 16 x 16 | |
y = self.up_16_16_1_attn(y) | |
y = torch.cat((x10, y), dim=1) # 768 x 16 x 16 | |
y = self.up_16_16_2(y, y) # 512 x 16 x 16 | |
y = self.up_16_16_2_attn(y) | |
y = torch.cat((x9, y), dim=1) # 1024 x 16 x 16 | |
y = self.up_16_16_3(y, y) # 512 x 16 x 16 | |
y = self.up_16_16_3_attn(y) | |
y = torch.cat((x8, y), dim=1) # 1024 x 16 x 16 | |
y = self.up_16_32(y, y) # 256 x 32 x 32 | |
y = torch.cat((x7, y), dim=1) | |
y = self.up_32_32_1(y) # 256 x 32 x 32 | |
y = self.up_32_32_1_attn(y) | |
y = torch.cat((x6, y), dim=1) | |
y = self.up_32_64(y, y) | |
y = torch.cat((x5, y), dim=1) | |
y = self.up_64_64_1(y) # 128 x 64 x 64 | |
y = torch.cat((x4, y), dim=1) | |
y = self.up_64_128(y, y) | |
y = torch.cat((x3, y), dim=1) | |
y = self.up_128_128_1(y) # 64 x 128 x 128 | |
y = torch.cat((x2, y), dim=1) | |
y = self.up_128_256(y, y) # 32 x 256 x 256 | |
y = torch.cat((x1, y), dim=1) | |
y = self.out_conv(y, y) # 3 x 256 x 256 | |
y = self.out_act(y) | |
return y | |
class Attention_Unet(nn.Module): | |
def __init__(self, in_channels, out_channels, num_heads=8, resnet=True, mid_act='gelu', out_act='gelu'): | |
super(Attention_Unet, self).__init__() | |
self.encoder = Attention_Encoder(in_channels, mid_act, num_heads, resnet) | |
self.decoder = Attention_Decoder(out_channels, mid_act, out_act, resnet) | |
def forward(self, x): | |
latent = self.encoder(x) | |
pred = self.decoder(latent) | |
return pred | |
if __name__ == '__main__': | |
test_input = torch.randn(5, 1, 256, 256) | |
style = torch.randn(5, 100) | |
model = SSN_v1(1, 1, mid_act='gelu', out_act='gelu', resnet=True) | |
test_out = model(test_input, style) | |
print('Ouptut shape: ', test_out.shape) | |