yichen-purdue's picture
init
34fb220
raw
history blame
7.59 kB
from abc import abstractmethod
from functools import partial
from typing import Iterable
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .SSN import Conv, Conv2DMod, Decoder, Up
from .attention import AttentionBlock
from .blocks import ResBlock, Res_Type, get_activation
class Attention_Encoder(nn.Module):
def __init__(self, in_channels=3, mid_act='gelu', dropout=0.0, num_heads=8, resnet=True):
super(Attention_Encoder, self).__init__()
self.in_conv = Conv(in_channels, 32-in_channels, stride=1, activation=mid_act, resnet=resnet)
self.down_32_64 = Conv(32, 64, stride=2, activation=mid_act, resnet=resnet)
self.down_64_64_1 = Conv(64, 64, activation=mid_act, resnet=resnet)
self.down_64_128 = Conv(64, 128, stride=2, activation=mid_act, resnet=resnet)
self.down_128_128_1 = Conv(128, 128, activation=mid_act, resnet=resnet)
self.down_128_256 = Conv(128, 256, stride=2, activation=mid_act, resnet=resnet)
self.down_256_256_1 = Conv(256, 256, activation=mid_act, resnet=resnet)
self.down_256_256_1_attn = AttentionBlock(256, num_heads)
self.down_256_512 = Conv(256, 512, stride=2, activation=mid_act, resnet=resnet)
self.down_512_512_1 = Conv(512, 512, activation=mid_act, resnet=resnet)
self.down_512_512_1_attn = AttentionBlock(512, num_heads)
self.down_512_512_2 = Conv(512, 512, activation=mid_act, resnet=resnet)
self.down_512_512_2_attn = AttentionBlock(512, num_heads)
self.down_512_512_3 = Conv(512, 512, activation=mid_act, resnet=resnet)
self.down_512_512_3_attn = AttentionBlock(512, num_heads)
def forward(self, x):
x1 = self.in_conv(x) # 32 x 256 x 256
x1 = torch.cat((x, x1), dim=1)
x2 = self.down_32_64(x1)
x3 = self.down_64_64_1(x2)
x4 = self.down_64_128(x3)
x5 = self.down_128_128_1(x4)
x6 = self.down_128_256(x5)
x7 = self.down_256_256_1(x6)
x7 = self.down_256_256_1_attn(x7)
x8 = self.down_256_512(x7)
x9 = self.down_512_512_1(x8)
x9 = self.down_512_512_1_attn(x9)
x10 = self.down_512_512_2(x9)
x10 = self.down_512_512_2_attn(x10)
x11 = self.down_512_512_3(x10)
x11 = self.down_512_512_3_attn(x11)
return x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1
class Attention_Decoder(nn.Module):
def __init__(self, out_channels=3, mid_act='gelu', out_act='sigmoid', resnet = True, num_heads=8):
super(Attention_Decoder, self).__init__()
input_channel = 512
fea_dim = 100
self.to_style1 = nn.Linear(in_features=fea_dim, out_features=input_channel)
self.up_16_16_1 = Conv(input_channel, 256, activation=mid_act, style=True, resnet=resnet)
self.up_16_16_1_attn = AttentionBlock(256, num_heads=num_heads)
self.up_16_16_2 = Conv(768, 512, activation=mid_act, resnet=resnet)
self.up_16_16_2_attn = AttentionBlock(512, num_heads=num_heads)
self.up_16_16_3 = Conv(1024, 512, activation=mid_act, resnet=resnet)
self.up_16_16_3_attn = AttentionBlock(512, num_heads=num_heads)
self.up_16_32 = Up(1024, 256, activation=mid_act, resnet=resnet)
self.to_style2 = nn.Linear(in_features=fea_dim, out_features=512)
self.up_32_32_1 = Conv(512, 256, activation=mid_act, style=True, resnet=resnet)
self.up_32_32_1_attn = AttentionBlock(256, num_heads=num_heads)
self.up_32_64 = Up(512, 128, activation=mid_act, resnet=resnet)
self.to_style3 = nn.Linear(in_features=fea_dim, out_features=256)
self.up_64_64_1 = Conv(256, 128, activation=mid_act, style=True, resnet=resnet)
self.up_64_128 = Up(256, 64, activation=mid_act, resnet=resnet)
self.to_style4 = nn.Linear(in_features=fea_dim, out_features=128)
self.up_128_128_1 = Conv(128, 64, activation=mid_act, style=True, resnet=resnet)
self.up_128_256 = Up(128, 32, activation=mid_act, resnet=resnet)
self.out_conv = Conv(64, out_channels, activation=out_act)
self.out_act = get_activation(out_act)
def forward(self, x, style):
x11, x10, x9, x8, x7, x6, x5, x4, x3, x2, x1 = x
style1 = self.to_style1(style)
y = self.up_16_16_1(x11, style1) # 256 x 16 x 16
y = self.up_16_16_1_attn(y)
y = torch.cat((x10, y), dim=1) # 768 x 16 x 16
y = self.up_16_16_2(y, y) # 512 x 16 x 16
y = self.up_16_16_2_attn(y)
y = torch.cat((x9, y), dim=1) # 1024 x 16 x 16
y = self.up_16_16_3(y, y) # 512 x 16 x 16
y = self.up_16_16_3_attn(y)
y = torch.cat((x8, y), dim=1) # 1024 x 16 x 16
y = self.up_16_32(y, y) # 256 x 32 x 32
y = torch.cat((x7, y), dim=1)
style2 = self.to_style2(style)
y = self.up_32_32_1(y, style2) # 256 x 32 x 32
y = self.up_32_32_1_attn(y)
y = torch.cat((x6, y), dim=1)
y = self.up_32_64(y, y)
y = torch.cat((x5, y), dim=1)
style3 = self.to_style3(style)
y = self.up_64_64_1(y, style3) # 128 x 64 x 64
y = torch.cat((x4, y), dim=1)
y = self.up_64_128(y, y)
y = torch.cat((x3, y), dim=1)
style4 = self.to_style4(style)
y = self.up_128_128_1(y, style4) # 64 x 128 x 128
y = torch.cat((x2, y), dim=1)
y = self.up_128_256(y, y) # 32 x 256 x 256
y = torch.cat((x1, y), dim=1)
y = self.out_conv(y, y) # 3 x 256 x 256
y = self.out_act(y)
return y
class Attention_SSN(nn.Module):
def __init__(self, in_channels, out_channels, num_heads=8, resnet=True, mid_act='gelu', out_act='gelu'):
super(Attention_SSN, self).__init__()
self.encoder = Attention_Encoder(in_channels, mid_act, num_heads, resnet)
self.decoder = Attention_Decoder(out_channels, mid_act, out_act, resnet)
def forward(self, x, softness):
latent = self.encoder(x)
pred = self.decoder(latent, softness)
return pred
def get_model_size(model):
param_size = 0
import pdb; pdb.set_trace()
for param in model.parameters():
param_size += param.nelement() * param.element_size()
buffer_size = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
size_all_mb = (param_size + buffer_size) / 1024 ** 2
print('model size: {:.3f}MB'.format(size_all_mb))
# return param_size + buffer_size
return size_all_mb
if __name__ == '__main__':
model = AttentionBlock(in_channels=256, num_heads=8)
x = torch.randn(5, 256, 64, 64)
y = model(x)
print('{}, {}'.format(x.shape, y.shape))
# ------------------------------------------------------------------ #
in_channels = 3
out_channels = 1
num_heads = 8
resnet = True
mid_act = 'gelu'
out_act = 'gelu'
model = Attention_SSN(in_channels=in_channels,
out_channels=out_channels,
num_heads=num_heads,
resnet=resnet,
mid_act=mid_act,
out_act=out_act)
x = torch.randn(5, 3, 256, 256)
softness = torch.randn(5, 100)
y = model(x, softness)
print('x: {}, y: {}'.format(x.shape, y.shape))
get_model_size(model)
# ------------------------------------------------------------------ #