Spaces:
Runtime error
Runtime error
- x_transformer.py +641 -0
x_transformer.py
ADDED
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
|
2 |
+
import torch
|
3 |
+
from torch import nn, einsum
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from functools import partial
|
6 |
+
from inspect import isfunction
|
7 |
+
from collections import namedtuple
|
8 |
+
from einops import rearrange, repeat, reduce
|
9 |
+
|
10 |
+
# constants
|
11 |
+
|
12 |
+
DEFAULT_DIM_HEAD = 64
|
13 |
+
|
14 |
+
Intermediates = namedtuple('Intermediates', [
|
15 |
+
'pre_softmax_attn',
|
16 |
+
'post_softmax_attn'
|
17 |
+
])
|
18 |
+
|
19 |
+
LayerIntermediates = namedtuple('Intermediates', [
|
20 |
+
'hiddens',
|
21 |
+
'attn_intermediates'
|
22 |
+
])
|
23 |
+
|
24 |
+
|
25 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
26 |
+
def __init__(self, dim, max_seq_len):
|
27 |
+
super().__init__()
|
28 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
29 |
+
self.init_()
|
30 |
+
|
31 |
+
def init_(self):
|
32 |
+
nn.init.normal_(self.emb.weight, std=0.02)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
n = torch.arange(x.shape[1], device=x.device)
|
36 |
+
return self.emb(n)[None, :, :]
|
37 |
+
|
38 |
+
|
39 |
+
class FixedPositionalEmbedding(nn.Module):
|
40 |
+
def __init__(self, dim):
|
41 |
+
super().__init__()
|
42 |
+
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
43 |
+
self.register_buffer('inv_freq', inv_freq)
|
44 |
+
|
45 |
+
def forward(self, x, seq_dim=1, offset=0):
|
46 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
|
47 |
+
sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
|
48 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
49 |
+
return emb[None, :, :]
|
50 |
+
|
51 |
+
|
52 |
+
# helpers
|
53 |
+
|
54 |
+
def exists(val):
|
55 |
+
return val is not None
|
56 |
+
|
57 |
+
|
58 |
+
def default(val, d):
|
59 |
+
if exists(val):
|
60 |
+
return val
|
61 |
+
return d() if isfunction(d) else d
|
62 |
+
|
63 |
+
|
64 |
+
def always(val):
|
65 |
+
def inner(*args, **kwargs):
|
66 |
+
return val
|
67 |
+
return inner
|
68 |
+
|
69 |
+
|
70 |
+
def not_equals(val):
|
71 |
+
def inner(x):
|
72 |
+
return x != val
|
73 |
+
return inner
|
74 |
+
|
75 |
+
|
76 |
+
def equals(val):
|
77 |
+
def inner(x):
|
78 |
+
return x == val
|
79 |
+
return inner
|
80 |
+
|
81 |
+
|
82 |
+
def max_neg_value(tensor):
|
83 |
+
return -torch.finfo(tensor.dtype).max
|
84 |
+
|
85 |
+
|
86 |
+
# keyword argument helpers
|
87 |
+
|
88 |
+
def pick_and_pop(keys, d):
|
89 |
+
values = list(map(lambda key: d.pop(key), keys))
|
90 |
+
return dict(zip(keys, values))
|
91 |
+
|
92 |
+
|
93 |
+
def group_dict_by_key(cond, d):
|
94 |
+
return_val = [dict(), dict()]
|
95 |
+
for key in d.keys():
|
96 |
+
match = bool(cond(key))
|
97 |
+
ind = int(not match)
|
98 |
+
return_val[ind][key] = d[key]
|
99 |
+
return (*return_val,)
|
100 |
+
|
101 |
+
|
102 |
+
def string_begins_with(prefix, str):
|
103 |
+
return str.startswith(prefix)
|
104 |
+
|
105 |
+
|
106 |
+
def group_by_key_prefix(prefix, d):
|
107 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
108 |
+
|
109 |
+
|
110 |
+
def groupby_prefix_and_trim(prefix, d):
|
111 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
112 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
113 |
+
return kwargs_without_prefix, kwargs
|
114 |
+
|
115 |
+
|
116 |
+
# classes
|
117 |
+
class Scale(nn.Module):
|
118 |
+
def __init__(self, value, fn):
|
119 |
+
super().__init__()
|
120 |
+
self.value = value
|
121 |
+
self.fn = fn
|
122 |
+
|
123 |
+
def forward(self, x, **kwargs):
|
124 |
+
x, *rest = self.fn(x, **kwargs)
|
125 |
+
return (x * self.value, *rest)
|
126 |
+
|
127 |
+
|
128 |
+
class Rezero(nn.Module):
|
129 |
+
def __init__(self, fn):
|
130 |
+
super().__init__()
|
131 |
+
self.fn = fn
|
132 |
+
self.g = nn.Parameter(torch.zeros(1))
|
133 |
+
|
134 |
+
def forward(self, x, **kwargs):
|
135 |
+
x, *rest = self.fn(x, **kwargs)
|
136 |
+
return (x * self.g, *rest)
|
137 |
+
|
138 |
+
|
139 |
+
class ScaleNorm(nn.Module):
|
140 |
+
def __init__(self, dim, eps=1e-5):
|
141 |
+
super().__init__()
|
142 |
+
self.scale = dim ** -0.5
|
143 |
+
self.eps = eps
|
144 |
+
self.g = nn.Parameter(torch.ones(1))
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
148 |
+
return x / norm.clamp(min=self.eps) * self.g
|
149 |
+
|
150 |
+
|
151 |
+
class RMSNorm(nn.Module):
|
152 |
+
def __init__(self, dim, eps=1e-8):
|
153 |
+
super().__init__()
|
154 |
+
self.scale = dim ** -0.5
|
155 |
+
self.eps = eps
|
156 |
+
self.g = nn.Parameter(torch.ones(dim))
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
|
160 |
+
return x / norm.clamp(min=self.eps) * self.g
|
161 |
+
|
162 |
+
|
163 |
+
class Residual(nn.Module):
|
164 |
+
def forward(self, x, residual):
|
165 |
+
return x + residual
|
166 |
+
|
167 |
+
|
168 |
+
class GRUGating(nn.Module):
|
169 |
+
def __init__(self, dim):
|
170 |
+
super().__init__()
|
171 |
+
self.gru = nn.GRUCell(dim, dim)
|
172 |
+
|
173 |
+
def forward(self, x, residual):
|
174 |
+
gated_output = self.gru(
|
175 |
+
rearrange(x, 'b n d -> (b n) d'),
|
176 |
+
rearrange(residual, 'b n d -> (b n) d')
|
177 |
+
)
|
178 |
+
|
179 |
+
return gated_output.reshape_as(x)
|
180 |
+
|
181 |
+
|
182 |
+
# feedforward
|
183 |
+
|
184 |
+
class GEGLU(nn.Module):
|
185 |
+
def __init__(self, dim_in, dim_out):
|
186 |
+
super().__init__()
|
187 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
188 |
+
|
189 |
+
def forward(self, x):
|
190 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
191 |
+
return x * F.gelu(gate)
|
192 |
+
|
193 |
+
|
194 |
+
class FeedForward(nn.Module):
|
195 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
196 |
+
super().__init__()
|
197 |
+
inner_dim = int(dim * mult)
|
198 |
+
dim_out = default(dim_out, dim)
|
199 |
+
project_in = nn.Sequential(
|
200 |
+
nn.Linear(dim, inner_dim),
|
201 |
+
nn.GELU()
|
202 |
+
) if not glu else GEGLU(dim, inner_dim)
|
203 |
+
|
204 |
+
self.net = nn.Sequential(
|
205 |
+
project_in,
|
206 |
+
nn.Dropout(dropout),
|
207 |
+
nn.Linear(inner_dim, dim_out)
|
208 |
+
)
|
209 |
+
|
210 |
+
def forward(self, x):
|
211 |
+
return self.net(x)
|
212 |
+
|
213 |
+
|
214 |
+
# attention.
|
215 |
+
class Attention(nn.Module):
|
216 |
+
def __init__(
|
217 |
+
self,
|
218 |
+
dim,
|
219 |
+
dim_head=DEFAULT_DIM_HEAD,
|
220 |
+
heads=8,
|
221 |
+
causal=False,
|
222 |
+
mask=None,
|
223 |
+
talking_heads=False,
|
224 |
+
sparse_topk=None,
|
225 |
+
use_entmax15=False,
|
226 |
+
num_mem_kv=0,
|
227 |
+
dropout=0.,
|
228 |
+
on_attn=False
|
229 |
+
):
|
230 |
+
super().__init__()
|
231 |
+
if use_entmax15:
|
232 |
+
raise NotImplementedError("Check out entmax activation instead of softmax activation!")
|
233 |
+
self.scale = dim_head ** -0.5
|
234 |
+
self.heads = heads
|
235 |
+
self.causal = causal
|
236 |
+
self.mask = mask
|
237 |
+
|
238 |
+
inner_dim = dim_head * heads
|
239 |
+
|
240 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
241 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
242 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
243 |
+
self.dropout = nn.Dropout(dropout)
|
244 |
+
|
245 |
+
# talking heads
|
246 |
+
self.talking_heads = talking_heads
|
247 |
+
if talking_heads:
|
248 |
+
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
249 |
+
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
|
250 |
+
|
251 |
+
# explicit topk sparse attention
|
252 |
+
self.sparse_topk = sparse_topk
|
253 |
+
|
254 |
+
# entmax
|
255 |
+
#self.attn_fn = entmax15 if use_entmax15 else F.softmax
|
256 |
+
self.attn_fn = F.softmax
|
257 |
+
|
258 |
+
# add memory key / values
|
259 |
+
self.num_mem_kv = num_mem_kv
|
260 |
+
if num_mem_kv > 0:
|
261 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
262 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
263 |
+
|
264 |
+
# attention on attention
|
265 |
+
self.attn_on_attn = on_attn
|
266 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
|
267 |
+
|
268 |
+
def forward(
|
269 |
+
self,
|
270 |
+
x,
|
271 |
+
context=None,
|
272 |
+
mask=None,
|
273 |
+
context_mask=None,
|
274 |
+
rel_pos=None,
|
275 |
+
sinusoidal_emb=None,
|
276 |
+
prev_attn=None,
|
277 |
+
mem=None
|
278 |
+
):
|
279 |
+
b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
|
280 |
+
kv_input = default(context, x)
|
281 |
+
|
282 |
+
q_input = x
|
283 |
+
k_input = kv_input
|
284 |
+
v_input = kv_input
|
285 |
+
|
286 |
+
if exists(mem):
|
287 |
+
k_input = torch.cat((mem, k_input), dim=-2)
|
288 |
+
v_input = torch.cat((mem, v_input), dim=-2)
|
289 |
+
|
290 |
+
if exists(sinusoidal_emb):
|
291 |
+
# in shortformer, the query would start at a position offset depending on the past cached memory
|
292 |
+
offset = k_input.shape[-2] - q_input.shape[-2]
|
293 |
+
q_input = q_input + sinusoidal_emb(q_input, offset=offset)
|
294 |
+
k_input = k_input + sinusoidal_emb(k_input)
|
295 |
+
|
296 |
+
q = self.to_q(q_input)
|
297 |
+
k = self.to_k(k_input)
|
298 |
+
v = self.to_v(v_input)
|
299 |
+
|
300 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
|
301 |
+
|
302 |
+
input_mask = None
|
303 |
+
if any(map(exists, (mask, context_mask))):
|
304 |
+
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
|
305 |
+
k_mask = q_mask if not exists(context) else context_mask
|
306 |
+
k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
|
307 |
+
q_mask = rearrange(q_mask, 'b i -> b () i ()')
|
308 |
+
k_mask = rearrange(k_mask, 'b j -> b () () j')
|
309 |
+
input_mask = q_mask * k_mask
|
310 |
+
|
311 |
+
if self.num_mem_kv > 0:
|
312 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
|
313 |
+
k = torch.cat((mem_k, k), dim=-2)
|
314 |
+
v = torch.cat((mem_v, v), dim=-2)
|
315 |
+
if exists(input_mask):
|
316 |
+
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
|
317 |
+
|
318 |
+
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
319 |
+
mask_value = max_neg_value(dots)
|
320 |
+
|
321 |
+
if exists(prev_attn):
|
322 |
+
dots = dots + prev_attn
|
323 |
+
|
324 |
+
pre_softmax_attn = dots
|
325 |
+
|
326 |
+
if talking_heads:
|
327 |
+
dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
|
328 |
+
|
329 |
+
if exists(rel_pos):
|
330 |
+
dots = rel_pos(dots)
|
331 |
+
|
332 |
+
if exists(input_mask):
|
333 |
+
dots.masked_fill_(~input_mask, mask_value)
|
334 |
+
del input_mask
|
335 |
+
|
336 |
+
if self.causal:
|
337 |
+
i, j = dots.shape[-2:]
|
338 |
+
r = torch.arange(i, device=device)
|
339 |
+
mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
|
340 |
+
mask = F.pad(mask, (j - i, 0), value=False)
|
341 |
+
dots.masked_fill_(mask, mask_value)
|
342 |
+
del mask
|
343 |
+
|
344 |
+
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
|
345 |
+
top, _ = dots.topk(self.sparse_topk, dim=-1)
|
346 |
+
vk = top[..., -1].unsqueeze(-1).expand_as(dots)
|
347 |
+
mask = dots < vk
|
348 |
+
dots.masked_fill_(mask, mask_value)
|
349 |
+
del mask
|
350 |
+
|
351 |
+
attn = self.attn_fn(dots, dim=-1)
|
352 |
+
post_softmax_attn = attn
|
353 |
+
|
354 |
+
attn = self.dropout(attn)
|
355 |
+
|
356 |
+
if talking_heads:
|
357 |
+
attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
|
358 |
+
|
359 |
+
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
360 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
361 |
+
|
362 |
+
intermediates = Intermediates(
|
363 |
+
pre_softmax_attn=pre_softmax_attn,
|
364 |
+
post_softmax_attn=post_softmax_attn
|
365 |
+
)
|
366 |
+
|
367 |
+
return self.to_out(out), intermediates
|
368 |
+
|
369 |
+
|
370 |
+
class AttentionLayers(nn.Module):
|
371 |
+
def __init__(
|
372 |
+
self,
|
373 |
+
dim,
|
374 |
+
depth,
|
375 |
+
heads=8,
|
376 |
+
causal=False,
|
377 |
+
cross_attend=False,
|
378 |
+
only_cross=False,
|
379 |
+
use_scalenorm=False,
|
380 |
+
use_rmsnorm=False,
|
381 |
+
use_rezero=False,
|
382 |
+
rel_pos_num_buckets=32,
|
383 |
+
rel_pos_max_distance=128,
|
384 |
+
position_infused_attn=False,
|
385 |
+
custom_layers=None,
|
386 |
+
sandwich_coef=None,
|
387 |
+
par_ratio=None,
|
388 |
+
residual_attn=False,
|
389 |
+
cross_residual_attn=False,
|
390 |
+
macaron=False,
|
391 |
+
pre_norm=True,
|
392 |
+
gate_residual=False,
|
393 |
+
**kwargs
|
394 |
+
):
|
395 |
+
super().__init__()
|
396 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
397 |
+
attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
|
398 |
+
|
399 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
400 |
+
|
401 |
+
self.dim = dim
|
402 |
+
self.depth = depth
|
403 |
+
self.layers = nn.ModuleList([])
|
404 |
+
|
405 |
+
self.has_pos_emb = position_infused_attn
|
406 |
+
self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
|
407 |
+
self.rotary_pos_emb = always(None)
|
408 |
+
|
409 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
410 |
+
self.rel_pos = None
|
411 |
+
|
412 |
+
self.pre_norm = pre_norm
|
413 |
+
|
414 |
+
self.residual_attn = residual_attn
|
415 |
+
self.cross_residual_attn = cross_residual_attn
|
416 |
+
|
417 |
+
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
|
418 |
+
norm_class = RMSNorm if use_rmsnorm else norm_class
|
419 |
+
norm_fn = partial(norm_class, dim)
|
420 |
+
|
421 |
+
norm_fn = nn.Identity if use_rezero else norm_fn
|
422 |
+
branch_fn = Rezero if use_rezero else None
|
423 |
+
|
424 |
+
if cross_attend and not only_cross:
|
425 |
+
default_block = ('a', 'c', 'f')
|
426 |
+
elif cross_attend and only_cross:
|
427 |
+
default_block = ('c', 'f')
|
428 |
+
else:
|
429 |
+
default_block = ('a', 'f')
|
430 |
+
|
431 |
+
if macaron:
|
432 |
+
default_block = ('f',) + default_block
|
433 |
+
|
434 |
+
if exists(custom_layers):
|
435 |
+
layer_types = custom_layers
|
436 |
+
elif exists(par_ratio):
|
437 |
+
par_depth = depth * len(default_block)
|
438 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
439 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
440 |
+
par_attn = par_depth // par_ratio
|
441 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
442 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
443 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
444 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
445 |
+
par_head = par_block * par_attn
|
446 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
447 |
+
elif exists(sandwich_coef):
|
448 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
449 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
450 |
+
else:
|
451 |
+
layer_types = default_block * depth
|
452 |
+
|
453 |
+
self.layer_types = layer_types
|
454 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
455 |
+
|
456 |
+
for layer_type in self.layer_types:
|
457 |
+
if layer_type == 'a':
|
458 |
+
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
|
459 |
+
elif layer_type == 'c':
|
460 |
+
layer = Attention(dim, heads=heads, **attn_kwargs)
|
461 |
+
elif layer_type == 'f':
|
462 |
+
layer = FeedForward(dim, **ff_kwargs)
|
463 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
464 |
+
else:
|
465 |
+
raise Exception(f'invalid layer type {layer_type}')
|
466 |
+
|
467 |
+
if isinstance(layer, Attention) and exists(branch_fn):
|
468 |
+
layer = branch_fn(layer)
|
469 |
+
|
470 |
+
if gate_residual:
|
471 |
+
residual_fn = GRUGating(dim)
|
472 |
+
else:
|
473 |
+
residual_fn = Residual()
|
474 |
+
|
475 |
+
self.layers.append(nn.ModuleList([
|
476 |
+
norm_fn(),
|
477 |
+
layer,
|
478 |
+
residual_fn
|
479 |
+
]))
|
480 |
+
|
481 |
+
def forward(
|
482 |
+
self,
|
483 |
+
x,
|
484 |
+
context=None,
|
485 |
+
mask=None,
|
486 |
+
context_mask=None,
|
487 |
+
mems=None,
|
488 |
+
return_hiddens=False
|
489 |
+
):
|
490 |
+
hiddens = []
|
491 |
+
intermediates = []
|
492 |
+
prev_attn = None
|
493 |
+
prev_cross_attn = None
|
494 |
+
|
495 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
496 |
+
|
497 |
+
for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
|
498 |
+
is_last = ind == (len(self.layers) - 1)
|
499 |
+
|
500 |
+
if layer_type == 'a':
|
501 |
+
hiddens.append(x)
|
502 |
+
layer_mem = mems.pop(0)
|
503 |
+
|
504 |
+
residual = x
|
505 |
+
|
506 |
+
if self.pre_norm:
|
507 |
+
x = norm(x)
|
508 |
+
|
509 |
+
if layer_type == 'a':
|
510 |
+
out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
|
511 |
+
prev_attn=prev_attn, mem=layer_mem)
|
512 |
+
elif layer_type == 'c':
|
513 |
+
out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
|
514 |
+
elif layer_type == 'f':
|
515 |
+
out = block(x)
|
516 |
+
|
517 |
+
x = residual_fn(out, residual)
|
518 |
+
|
519 |
+
if layer_type in ('a', 'c'):
|
520 |
+
intermediates.append(inter)
|
521 |
+
|
522 |
+
if layer_type == 'a' and self.residual_attn:
|
523 |
+
prev_attn = inter.pre_softmax_attn
|
524 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
525 |
+
prev_cross_attn = inter.pre_softmax_attn
|
526 |
+
|
527 |
+
if not self.pre_norm and not is_last:
|
528 |
+
x = norm(x)
|
529 |
+
|
530 |
+
if return_hiddens:
|
531 |
+
intermediates = LayerIntermediates(
|
532 |
+
hiddens=hiddens,
|
533 |
+
attn_intermediates=intermediates
|
534 |
+
)
|
535 |
+
|
536 |
+
return x, intermediates
|
537 |
+
|
538 |
+
return x
|
539 |
+
|
540 |
+
|
541 |
+
class Encoder(AttentionLayers):
|
542 |
+
def __init__(self, **kwargs):
|
543 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
544 |
+
super().__init__(causal=False, **kwargs)
|
545 |
+
|
546 |
+
|
547 |
+
|
548 |
+
class TransformerWrapper(nn.Module):
|
549 |
+
def __init__(
|
550 |
+
self,
|
551 |
+
*,
|
552 |
+
num_tokens,
|
553 |
+
max_seq_len,
|
554 |
+
attn_layers,
|
555 |
+
emb_dim=None,
|
556 |
+
max_mem_len=0.,
|
557 |
+
emb_dropout=0.,
|
558 |
+
num_memory_tokens=None,
|
559 |
+
tie_embedding=False,
|
560 |
+
use_pos_emb=True
|
561 |
+
):
|
562 |
+
super().__init__()
|
563 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
564 |
+
|
565 |
+
dim = attn_layers.dim
|
566 |
+
emb_dim = default(emb_dim, dim)
|
567 |
+
|
568 |
+
self.max_seq_len = max_seq_len
|
569 |
+
self.max_mem_len = max_mem_len
|
570 |
+
self.num_tokens = num_tokens
|
571 |
+
|
572 |
+
self.token_emb = nn.Embedding(num_tokens, emb_dim)
|
573 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
|
574 |
+
use_pos_emb and not attn_layers.has_pos_emb) else always(0)
|
575 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
576 |
+
|
577 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
578 |
+
self.attn_layers = attn_layers
|
579 |
+
self.norm = nn.LayerNorm(dim)
|
580 |
+
|
581 |
+
self.init_()
|
582 |
+
|
583 |
+
self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
|
584 |
+
|
585 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
586 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
587 |
+
self.num_memory_tokens = num_memory_tokens
|
588 |
+
if num_memory_tokens > 0:
|
589 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
590 |
+
|
591 |
+
# let funnel encoder know number of memory tokens, if specified
|
592 |
+
if hasattr(attn_layers, 'num_memory_tokens'):
|
593 |
+
attn_layers.num_memory_tokens = num_memory_tokens
|
594 |
+
|
595 |
+
def init_(self):
|
596 |
+
nn.init.normal_(self.token_emb.weight, std=0.02)
|
597 |
+
|
598 |
+
def forward(
|
599 |
+
self,
|
600 |
+
x,
|
601 |
+
return_embeddings=False,
|
602 |
+
mask=None,
|
603 |
+
return_mems=False,
|
604 |
+
return_attn=False,
|
605 |
+
mems=None,
|
606 |
+
**kwargs
|
607 |
+
):
|
608 |
+
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
|
609 |
+
x = self.token_emb(x)
|
610 |
+
x += self.pos_emb(x)
|
611 |
+
x = self.emb_dropout(x)
|
612 |
+
|
613 |
+
x = self.project_emb(x)
|
614 |
+
|
615 |
+
if num_mem > 0:
|
616 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
|
617 |
+
x = torch.cat((mem, x), dim=1)
|
618 |
+
|
619 |
+
# auto-handle masking after appending memory tokens
|
620 |
+
if exists(mask):
|
621 |
+
mask = F.pad(mask, (num_mem, 0), value=True)
|
622 |
+
|
623 |
+
x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
|
624 |
+
x = self.norm(x)
|
625 |
+
|
626 |
+
mem, x = x[:, :num_mem], x[:, num_mem:]
|
627 |
+
|
628 |
+
out = self.to_logits(x) if not return_embeddings else x
|
629 |
+
|
630 |
+
if return_mems:
|
631 |
+
hiddens = intermediates.hiddens
|
632 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
|
633 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
634 |
+
return out, new_mems
|
635 |
+
|
636 |
+
if return_attn:
|
637 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
638 |
+
return out, attn_maps
|
639 |
+
|
640 |
+
return out
|
641 |
+
|