Spaces:
Paused
Paused
import os, pdb | |
import argparse | |
import numpy as np | |
import torch | |
import requests | |
from PIL import Image | |
from lavis.models import load_model_and_preprocess | |
from utils.ddim_inv import DDIMInversion | |
from utils.scheduler import DDIMInverseScheduler | |
if __name__=="__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--input_image', type=str, default='assets/test_images/cat_a.png') | |
parser.add_argument('--results_folder', type=str, default='output/test_cat') | |
parser.add_argument('--num_ddim_steps', type=int, default=50) | |
parser.add_argument('--model_path', type=str, default='CompVis/stable-diffusion-v1-4') | |
parser.add_argument('--use_float_16', action='store_true') | |
args = parser.parse_args() | |
# make the output folders | |
os.makedirs(os.path.join(args.results_folder, "inversion"), exist_ok=True) | |
os.makedirs(os.path.join(args.results_folder, "prompt"), exist_ok=True) | |
if args.use_float_16: | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
# load the BLIP model | |
model_blip, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=torch.device("cuda")) | |
# make the DDIM inversion pipeline | |
pipe = DDIMInversion.from_pretrained(args.model_path, torch_dtype=torch_dtype).to("cuda") | |
pipe.scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) | |
# if the input is a folder, collect all the images as a list | |
if os.path.isdir(args.input_image): | |
l_img_paths = sorted(glob(os.path.join(args.input_image, "*.png"))) | |
else: | |
l_img_paths = [args.input_image] | |
for img_path in l_img_paths: | |
bname = os.path.basename(args.input_image).split(".")[0] | |
img = Image.open(args.input_image).resize((512,512), Image.Resampling.LANCZOS) | |
# generate the caption | |
_image = vis_processors["eval"](img).unsqueeze(0).cuda() | |
prompt_str = model_blip.generate({"image": _image})[0] | |
x_inv, x_inv_image, x_dec_img = pipe( | |
prompt_str, | |
guidance_scale=1, | |
num_inversion_steps=args.num_ddim_steps, | |
img=img, | |
torch_dtype=torch_dtype | |
) | |
# save the inversion | |
print("Inside inversion >> save the inversion >>>") | |
print(os.path.join(args.results_folder, f"inversion/{bname}.pt")) | |
torch.save(x_inv[0], os.path.join(args.results_folder, f"inversion/{bname}.pt")) | |
# save the prompt string | |
print("Inside inversion >> save the prompt string >>>") | |
print(os.path.join(args.results_folder, f"prompt/{bname}.txt")) | |
with open(os.path.join(args.results_folder, f"prompt/{bname}.txt"), "w") as f: | |
f.write(prompt_str) | |