Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch T5 model.""" | |
| import copy | |
| import math | |
| import os | |
| import warnings | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from torch.utils.checkpoint import checkpoint | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| Seq2SeqLMOutput, | |
| Seq2SeqModelOutput, | |
| ) | |
| from transformers.models.t5.configuration_t5 import T5Config | |
| from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer | |
| from transformers.utils import ( | |
| DUMMY_INPUTS, | |
| DUMMY_MASK, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| is_torch_fx_proxy, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
| from m4.models import DecoupledEmbedding, DecoupledLinear | |
| from m4.models.custom_modules import VLOOMPreTrainedModelBase | |
| from m4.models.vt5.configuration_vt5 import VT5Config | |
| from m4.training.packing import random_spans_helper | |
| from m4.training.utils import compute_tflops_per_batch_per_gpu, freeze_model | |
| from m4.utils import logging | |
| ALL_LAYERNORM_LAYERS = [nn.LayerNorm] | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "T5Config" | |
| _TOKENIZER_FOR_DOC = "T5Tokenizer" | |
| _CHECKPOINT_FOR_DOC = "t5-small" | |
| #################################################### | |
| # This dict contains ids and associated url | |
| # for the pretrained weights provided with the models | |
| #################################################### | |
| T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "t5-small", | |
| "t5-base", | |
| "t5-large", | |
| "t5-3b", | |
| "t5-11b", | |
| # See all T5 models at https://huggingface.co/models?filter=t5 | |
| ] | |
| #################################################### | |
| # This is a conversion method from TF 1.0 to PyTorch | |
| # More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 | |
| #################################################### | |
| def load_tf_weights_in_t5(model, config, tf_checkpoint_path): | |
| """Load tf checkpoints in a pytorch model.""" | |
| try: | |
| import re | |
| import numpy as np | |
| import tensorflow as tf | |
| except ImportError: | |
| logger.error( | |
| "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
| "https://www.tensorflow.org/install/ for installation instructions." | |
| ) | |
| raise | |
| tf_path = os.path.abspath(tf_checkpoint_path) | |
| logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
| # Load weights from TF model | |
| init_vars = tf.train.list_variables(tf_path) | |
| names = [] | |
| tf_weights = {} | |
| for name, shape in init_vars: | |
| logger.info(f"Loading TF weight {name} with shape {shape}") | |
| array = tf.train.load_variable(tf_path, name) | |
| names.append(name) | |
| tf_weights[name] = array | |
| for txt_name in names: | |
| name = txt_name.split("/") | |
| # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
| # which are not required for using pretrained model | |
| if any( | |
| n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] | |
| for n in name | |
| ): | |
| logger.info(f"Skipping {'/'.join(name)}") | |
| tf_weights.pop(txt_name, None) | |
| continue | |
| if "_slot_" in name[-1]: | |
| logger.info(f"Skipping {'/'.join(name)}") | |
| tf_weights.pop(txt_name, None) | |
| continue | |
| pointer = model | |
| array = tf_weights[txt_name] | |
| for m_name in name: | |
| if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
| scope_names = re.split(r"_(\d+)", m_name) | |
| else: | |
| scope_names = [m_name] | |
| if scope_names[0] in ["kernel", "scale", "embedding"]: | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "self_attention": | |
| pointer = getattr(pointer, "layer") | |
| pointer = pointer[0] | |
| elif scope_names[0] == "enc_dec_attention": | |
| pointer = getattr(pointer, "layer") | |
| pointer = pointer[1] | |
| elif scope_names[0] == "dense_relu_dense": | |
| pointer = getattr(pointer, "layer") | |
| pointer = pointer[2] | |
| elif scope_names[0] == "rms_norm": | |
| if hasattr(pointer, "layer_norm"): | |
| pointer = getattr(pointer, "layer_norm") | |
| elif hasattr(pointer, "final_layer_norm"): | |
| pointer = getattr(pointer, "final_layer_norm") | |
| elif scope_names[0] == "scale": | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
| pointer = getattr(pointer, "bias") | |
| elif scope_names[0] == "squad": | |
| pointer = getattr(pointer, "classifier") | |
| elif scope_names[0] == "decoder" and name[1] == "logits": | |
| continue | |
| elif scope_names[0] == "logits": | |
| pointer = getattr(pointer, "lm_head") | |
| elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): | |
| pointer = getattr(pointer, f"wi_{scope_names[1]}") | |
| continue | |
| else: | |
| try: | |
| pointer = getattr(pointer, scope_names[0]) | |
| except AttributeError: | |
| logger.info(f"Skipping {'/'.join(name)}") | |
| continue | |
| if len(scope_names) >= 2: | |
| num = int(scope_names[1]) | |
| pointer = pointer[num] | |
| if scope_names[0] not in ["kernel", "scale", "embedding"]: | |
| pointer = getattr(pointer, "weight") | |
| if scope_names[0] != "embedding": | |
| logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") | |
| array = np.transpose(array) | |
| try: | |
| assert ( | |
| pointer.shape == array.shape | |
| ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
| except AssertionError as e: | |
| e.args += (pointer.shape, array.shape) | |
| raise | |
| logger.info(f"Initialize PyTorch weight {name}") | |
| pointer.data = torch.from_numpy(array.astype(np.float32)) | |
| tf_weights.pop(txt_name, None) | |
| logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") | |
| return model | |
| #################################################### | |
| # PyTorch Models are constructed by sub-classing | |
| # - torch.nn.Module for the layers and | |
| # - PreTrainedModel for the models (it-self a sub-class of nn.Module) | |
| #################################################### | |
| PARALLELIZE_DOCSTRING = r""" | |
| This is an experimental feature and is a subject to change at a moment's notice. | |
| Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | |
| it will evenly distribute blocks across all devices. | |
| Args: | |
| device_map (`Dict[int, list]`, optional, defaults to None): | |
| A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | |
| automatically mapped to the first device (for esoteric reasons). That means that the first device should | |
| have fewer attention modules mapped to it than other devices. For reference, the t5 models have the | |
| following number of attention modules: | |
| - t5-small: 6 | |
| - t5-base: 12 | |
| - t5-large: 24 | |
| - t5-3b: 24 | |
| - t5-11b: 24 | |
| Example: | |
| ```python | |
| # Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules: | |
| model = T5ForConditionalGeneration.from_pretrained("t5-3b") | |
| device_map = { | |
| 0: [0, 1, 2], | |
| 1: [3, 4, 5, 6, 7, 8, 9], | |
| 2: [10, 11, 12, 13, 14, 15, 16], | |
| 3: [17, 18, 19, 20, 21, 22, 23], | |
| } | |
| model.parallelize(device_map) | |
| ``` | |
| """ | |
| DEPARALLELIZE_DOCSTRING = r""" | |
| Moves the model to cpu from a model parallel state. | |
| Example: | |
| ```python | |
| # On a 4 GPU machine with t5-3b: | |
| model = T5ForConditionalGeneration.from_pretrained("t5-3b") | |
| device_map = { | |
| 0: [0, 1, 2], | |
| 1: [3, 4, 5, 6, 7, 8, 9], | |
| 2: [10, 11, 12, 13, 14, 15, 16], | |
| 3: [17, 18, 19, 20, 21, 22, 23], | |
| } | |
| model.parallelize(device_map) # Splits the model across several devices | |
| model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | |
| ``` | |
| """ | |
| class T5LayerNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-6): | |
| """ | |
| Construct a layernorm module in the T5 style. No bias and no subtraction of mean. | |
| """ | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean | |
| # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated | |
| # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for | |
| # half-precision inputs is done in fp32 | |
| variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
| # convert into half-precision if necessary | |
| if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
| hidden_states = hidden_states.to(self.weight.dtype) | |
| return self.weight * hidden_states | |
| try: | |
| from apex.normalization import FusedRMSNorm | |
| T5LayerNorm = FusedRMSNorm # noqa | |
| logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm") | |
| except ImportError: | |
| # using the normal T5LayerNorm | |
| pass | |
| except Exception: | |
| logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") | |
| pass | |
| ALL_LAYERNORM_LAYERS = [nn.LayerNorm, T5LayerNorm] | |
| class T5DenseActDense(nn.Module): | |
| def __init__(self, config: T5Config): | |
| super().__init__() | |
| self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) | |
| self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| self.act = ACT2FN[config.dense_act_fn] | |
| def forward(self, hidden_states): | |
| hidden_states = self.wi(hidden_states) | |
| hidden_states = self.act(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.wo(hidden_states) | |
| return hidden_states | |
| class T5DenseGatedActDense(nn.Module): | |
| def __init__(self, config: T5Config): | |
| super().__init__() | |
| self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
| self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) | |
| self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| self.act = ACT2FN[config.dense_act_fn] | |
| def forward(self, hidden_states): | |
| hidden_gelu = self.act(self.wi_0(hidden_states)) | |
| hidden_linear = self.wi_1(hidden_states) | |
| hidden_states = hidden_gelu * hidden_linear | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.wo(hidden_states) | |
| return hidden_states | |
| class T5LayerFF(nn.Module): | |
| def __init__(self, config: T5Config, is_vision_cross_attention=False): | |
| super().__init__() | |
| if config.is_gated_act: | |
| self.DenseReluDense = T5DenseGatedActDense(config) | |
| else: | |
| self.DenseReluDense = T5DenseActDense(config) | |
| self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| self.is_vision_cross_attention = is_vision_cross_attention | |
| if is_vision_cross_attention: | |
| self.act = nn.Tanh() | |
| if config.alpha_initializer == "zeros": | |
| if config.alpha_type == "vector": | |
| self.alpha_dense = nn.Parameter(torch.zeros(1, 1, config.d_model)) | |
| elif config.alpha_type == "float": | |
| self.alpha_dense = nn.Parameter(torch.zeros(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer == "ones": | |
| if config.alpha_type == "vector": | |
| self.alpha_dense = nn.Parameter(torch.ones(1, 1, config.d_model)) | |
| elif config.alpha_type == "float": | |
| self.alpha_dense = nn.Parameter(torch.ones(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer in {"normal", "gaussian", "random"}: | |
| if config.alpha_type == "vector": | |
| self.alpha_dense = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, config.d_model)) | |
| ) | |
| elif config.alpha_type == "float": | |
| self.alpha_dense = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) | |
| ) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| else: | |
| raise NotImplementedError( | |
| f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!" | |
| ) | |
| def forward(self, hidden_states): | |
| forwarded_states = self.layer_norm(hidden_states) | |
| forwarded_states = self.DenseReluDense(forwarded_states) | |
| if not self.is_vision_cross_attention: | |
| hidden_states = hidden_states + self.dropout(forwarded_states) | |
| else: | |
| hidden_states = hidden_states + self.dropout(self.act(self.alpha_dense) * forwarded_states) | |
| return hidden_states | |
| class T5Attention(nn.Module): | |
| def __init__(self, config: T5Config, has_relative_attention_bias=False, is_vision_cross_attention=False): | |
| super().__init__() | |
| self.is_decoder = config.is_decoder | |
| self.has_relative_attention_bias = has_relative_attention_bias | |
| self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
| self.relative_attention_max_distance = config.relative_attention_max_distance | |
| self.d_model = config.d_model | |
| self.key_value_proj_dim = config.d_kv | |
| self.n_heads = config.num_heads | |
| self.dropout = config.dropout_rate | |
| self.inner_dim = self.n_heads * self.key_value_proj_dim | |
| # Mesh TensorFlow initialization to avoid scaling before softmax | |
| self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
| if not is_vision_cross_attention: | |
| self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
| self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | |
| else: | |
| vision_embed_dim = self.embed_dim if not hasattr(config, "vision_embed_dim") else config.vision_embed_dim | |
| self.k = nn.Linear(vision_embed_dim, self.inner_dim, bias=False) | |
| self.v = nn.Linear(vision_embed_dim, self.inner_dim, bias=False) | |
| self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | |
| if self.has_relative_attention_bias: | |
| self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) | |
| self.pruned_heads = set() | |
| self.gradient_checkpointing = False | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | |
| ) | |
| # Prune linear layers | |
| self.q = prune_linear_layer(self.q, index) | |
| self.k = prune_linear_layer(self.k, index) | |
| self.v = prune_linear_layer(self.v, index) | |
| self.o = prune_linear_layer(self.o, index, dim=1) | |
| # Update hyper params | |
| self.n_heads = self.n_heads - len(heads) | |
| self.inner_dim = self.key_value_proj_dim * self.n_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
| """ | |
| Adapted from Mesh Tensorflow: | |
| https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
| Translate relative position to a bucket number for relative attention. The relative position is defined as | |
| memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
| position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
| small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
| positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
| This should allow for more graceful generalization to longer sequences than the model has been trained on | |
| Args: | |
| relative_position: an int32 Tensor | |
| bidirectional: a boolean - whether the attention is bidirectional | |
| num_buckets: an integer | |
| max_distance: an integer | |
| Returns: | |
| a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
| """ | |
| relative_buckets = 0 | |
| if bidirectional: | |
| num_buckets //= 2 | |
| relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | |
| relative_position = torch.abs(relative_position) | |
| else: | |
| relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | |
| # now relative_position is in the range [0, inf) | |
| # half of the buckets are for exact increments in positions | |
| max_exact = num_buckets // 2 | |
| is_small = relative_position < max_exact | |
| # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
| relative_position_if_large = max_exact + ( | |
| torch.log(relative_position.float() / max_exact) | |
| / math.log(max_distance / max_exact) | |
| * (num_buckets - max_exact) | |
| ).to(torch.long) | |
| relative_position_if_large = torch.min( | |
| relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | |
| ) | |
| relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | |
| return relative_buckets | |
| def compute_bias(self, query_length, key_length, device=None): | |
| """Compute binned relative position bias""" | |
| if device is None: | |
| device = self.relative_attention_bias.weight.device | |
| context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | |
| memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | |
| relative_position = memory_position - context_position # shape (query_length, key_length) | |
| relative_position_bucket = self._relative_position_bucket( | |
| relative_position, # shape (query_length, key_length) | |
| bidirectional=(not self.is_decoder), | |
| num_buckets=self.relative_attention_num_buckets, | |
| max_distance=self.relative_attention_max_distance, | |
| ) | |
| values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) | |
| values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) | |
| return values | |
| def forward( | |
| self, | |
| hidden_states, | |
| mask=None, | |
| key_value_states=None, | |
| position_bias=None, | |
| past_key_value=None, | |
| layer_head_mask=None, | |
| query_length=None, | |
| use_cache=False, | |
| output_attentions=False, | |
| ): | |
| """ | |
| Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | |
| """ | |
| # Input is (batch_size, seq_length, dim) | |
| # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) | |
| # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) | |
| batch_size, seq_length = hidden_states.shape[:2] | |
| real_seq_length = seq_length | |
| if past_key_value is not None: | |
| assert ( | |
| len(past_key_value) == 2 | |
| ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | |
| real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | |
| key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | |
| def shape(states): | |
| """projection""" | |
| return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | |
| def unshape(states): | |
| """reshape""" | |
| return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | |
| def project(hidden_states, proj_layer, key_value_states, past_key_value): | |
| """projects hidden states correctly to key/query states""" | |
| if key_value_states is None: | |
| # self-attn | |
| # (batch_size, n_heads, seq_length, dim_per_head) | |
| hidden_states = shape(proj_layer(hidden_states)) | |
| elif past_key_value is None: | |
| # cross-attn | |
| # (batch_size, n_heads, seq_length, dim_per_head) | |
| hidden_states = shape(proj_layer(key_value_states)) | |
| if past_key_value is not None: | |
| if key_value_states is None: | |
| # self-attn | |
| # (batch_size, n_heads, key_length, dim_per_head) | |
| hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | |
| else: | |
| # cross-attn | |
| hidden_states = past_key_value | |
| return hidden_states | |
| # get query states | |
| query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) | |
| # get key/value states | |
| key_states = project( | |
| hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | |
| ) | |
| value_states = project( | |
| hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None | |
| ) | |
| # compute scores | |
| scores = torch.matmul( | |
| query_states, key_states.transpose(3, 2) | |
| ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
| if position_bias is None: | |
| if not self.has_relative_attention_bias: | |
| position_bias = torch.zeros( | |
| (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype | |
| ) | |
| if self.gradient_checkpointing and self.training: | |
| position_bias.requires_grad = True | |
| else: | |
| position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) | |
| # if key and values are already calculated | |
| # we want only the last query position bias | |
| if past_key_value is not None: | |
| position_bias = position_bias[:, :, -hidden_states.size(1) :, :] | |
| if mask is not None: | |
| position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) | |
| if self.pruned_heads: | |
| mask = torch.ones(position_bias.shape[1]) | |
| mask[list(self.pruned_heads)] = 0 | |
| position_bias_masked = position_bias[:, mask.bool()] | |
| else: | |
| position_bias_masked = position_bias | |
| scores += position_bias_masked | |
| attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( | |
| scores | |
| ) # (batch_size, n_heads, seq_length, key_length) | |
| attn_weights = nn.functional.dropout( | |
| attn_weights, p=self.dropout, training=self.training | |
| ) # (batch_size, n_heads, seq_length, key_length) | |
| # Mask heads if we want to | |
| if layer_head_mask is not None: | |
| attn_weights = attn_weights * layer_head_mask | |
| attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) | |
| attn_output = self.o(attn_output) | |
| present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None | |
| outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | |
| if output_attentions: | |
| outputs = outputs + (attn_weights,) | |
| return outputs | |
| class T5LayerSelfAttention(nn.Module): | |
| def __init__(self, config, has_relative_attention_bias=False): | |
| super().__init__() | |
| self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias) | |
| self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| position_bias=None, | |
| layer_head_mask=None, | |
| past_key_value=None, | |
| use_cache=False, | |
| output_attentions=False, | |
| ): | |
| normed_hidden_states = self.layer_norm(hidden_states) | |
| attention_output = self.SelfAttention( | |
| normed_hidden_states, | |
| mask=attention_mask, | |
| position_bias=position_bias, | |
| layer_head_mask=layer_head_mask, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = hidden_states + self.dropout(attention_output[0]) | |
| outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them | |
| return outputs | |
| class T5LayerCrossAttention(nn.Module): | |
| def __init__(self, config, is_vision_cross_attention=False): | |
| super().__init__() | |
| self.EncDecAttention = T5Attention( | |
| config, has_relative_attention_bias=False, is_vision_cross_attention=is_vision_cross_attention | |
| ) | |
| self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| self.is_vision_cross_attention = is_vision_cross_attention | |
| if is_vision_cross_attention: | |
| self.act = nn.Tanh() | |
| if config.alpha_initializer == "zeros": | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, config.d_model)) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter(torch.zeros(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer == "ones": | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, config.d_model)) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter(torch.ones(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer in {"normal", "gaussian", "random"}: | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, config.d_model)) | |
| ) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) | |
| ) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| else: | |
| raise NotImplementedError( | |
| f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!" | |
| ) | |
| def forward( | |
| self, | |
| hidden_states, | |
| key_value_states, | |
| attention_mask=None, | |
| position_bias=None, | |
| layer_head_mask=None, | |
| past_key_value=None, | |
| use_cache=False, | |
| query_length=None, | |
| output_attentions=False, | |
| ): | |
| normed_hidden_states = self.layer_norm(hidden_states) | |
| attention_output = self.EncDecAttention( | |
| normed_hidden_states, | |
| mask=attention_mask, | |
| key_value_states=key_value_states, | |
| position_bias=position_bias, | |
| layer_head_mask=layer_head_mask, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| query_length=query_length, | |
| output_attentions=output_attentions, | |
| ) | |
| if not self.is_vision_cross_attention: | |
| layer_output = hidden_states + self.dropout(attention_output[0]) | |
| else: | |
| layer_output = hidden_states + self.dropout(self.act(self.alpha_cross_attn) * attention_output[0]) | |
| outputs = (layer_output,) + attention_output[1:] # add attentions if we output them | |
| return outputs | |
| class T5Block(nn.Module): | |
| def __init__(self, config, has_relative_attention_bias=False): | |
| super().__init__() | |
| self.is_decoder = config.is_decoder | |
| self.layer = nn.ModuleList() | |
| self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) | |
| if self.is_decoder: | |
| self.layer.append(T5LayerCrossAttention(config)) | |
| self.layer.append(T5LayerFF(config)) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| position_bias=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| encoder_decoder_position_bias=None, | |
| layer_head_mask=None, | |
| cross_attn_layer_head_mask=None, | |
| past_key_value=None, | |
| use_cache=False, | |
| output_attentions=False, | |
| return_dict=True, | |
| ): | |
| if past_key_value is not None: | |
| if not self.is_decoder: | |
| logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") | |
| expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | |
| if len(past_key_value) != expected_num_past_key_values: | |
| raise ValueError( | |
| f"There should be {expected_num_past_key_values} past states. " | |
| f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | |
| f"Got {len(past_key_value)} past key / value states" | |
| ) | |
| self_attn_past_key_value = past_key_value[:2] | |
| cross_attn_past_key_value = past_key_value[2:] | |
| else: | |
| self_attn_past_key_value, cross_attn_past_key_value = None, None | |
| self_attention_outputs = self.layer[0]( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| position_bias=position_bias, | |
| layer_head_mask=layer_head_mask, | |
| past_key_value=self_attn_past_key_value, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states, present_key_value_state = self_attention_outputs[:2] | |
| attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights | |
| # clamp inf values to enable fp16 training | |
| if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
| do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
| if do_cross_attention: | |
| # the actual query length is unknown for cross attention | |
| # if using past key value states. Need to inject it here | |
| if present_key_value_state is not None: | |
| query_length = present_key_value_state[0].shape[2] | |
| else: | |
| query_length = None | |
| cross_attention_outputs = self.layer[1]( | |
| hidden_states, | |
| key_value_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| position_bias=encoder_decoder_position_bias, | |
| layer_head_mask=cross_attn_layer_head_mask, | |
| past_key_value=cross_attn_past_key_value, | |
| query_length=query_length, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = cross_attention_outputs[0] | |
| # clamp inf values to enable fp16 training | |
| if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
| # Combine self attn and cross attn key value states | |
| if present_key_value_state is not None: | |
| present_key_value_state = present_key_value_state + cross_attention_outputs[1] | |
| # Keep cross-attention outputs and relative position weights | |
| attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
| # Apply Feed Forward layer | |
| hidden_states = self.layer[-1](hidden_states) | |
| # clamp inf values to enable fp16 training | |
| if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
| outputs = (hidden_states,) | |
| if use_cache: | |
| outputs = outputs + (present_key_value_state,) + attention_outputs | |
| else: | |
| outputs = outputs + attention_outputs | |
| return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
| class VT5GatedCrossAttentionBlock(nn.Module): | |
| """Implementing the gated cross attention from the text LM to the vision encoder output.""" | |
| def __init__(self, config, has_relative_attention_bias=False): | |
| super().__init__() | |
| self.is_decoder = config.is_decoder | |
| self.layer = nn.ModuleList() | |
| self.layer.append(T5LayerCrossAttention(config, is_vision_cross_attention=True)) | |
| self.layer.append(T5LayerFF(config, is_vision_cross_attention=True)) | |
| def forward( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| encoder_decoder_position_bias=None, | |
| cross_attn_layer_head_mask=None, | |
| use_cache=False, | |
| output_attentions=False, | |
| return_dict=True, | |
| ): | |
| cross_attention_outputs = self.layer[0]( | |
| hidden_states, | |
| key_value_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| position_bias=encoder_decoder_position_bias, | |
| layer_head_mask=cross_attn_layer_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states, _ = cross_attention_outputs[ | |
| :2 | |
| ] # In the standard case, `_` would be `present_key_value_state`. But in the case of vision cross attention for the lm encoder, `present_key_value_state` is always None. So I am directly simplifying the logic by simply removing it and setting it to None where it should be None. | |
| # clamp inf values to enable fp16 training | |
| if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
| # Apply Feed Forward layer | |
| hidden_states = self.layer[-1](hidden_states) | |
| # clamp inf values to enable fp16 training | |
| if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
| outputs = (hidden_states,) | |
| if use_cache: | |
| outputs = outputs + (None,) + cross_attention_outputs[2:] | |
| else: | |
| outputs = outputs + cross_attention_outputs[2:] | |
| return outputs | |
| class VT5PreTrainedModel(VLOOMPreTrainedModelBase): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = VT5Config | |
| load_tf_weights = load_tf_weights_in_t5 | |
| base_model_prefix = "transformer" | |
| is_parallelizable = True | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["T5Block"] | |
| def dummy_inputs(self): | |
| input_ids = torch.tensor(DUMMY_INPUTS) | |
| input_mask = torch.tensor(DUMMY_MASK) | |
| dummy_inputs = { | |
| "decoder_input_ids": input_ids, | |
| "input_ids": input_ids, | |
| "decoder_attention_mask": input_mask, | |
| } | |
| return dummy_inputs | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| factor = self.config.initializer_factor # Used for testing weights initialization | |
| if isinstance(module, T5LayerNorm): | |
| module.weight.data.fill_(factor * 1.0) | |
| elif isinstance(module, (VT5Model, VT5ForConditionalGeneration)): | |
| # Mesh TensorFlow embeddings initialization | |
| # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 | |
| module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
| if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: | |
| module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
| elif isinstance(module, T5DenseActDense): | |
| # Mesh TensorFlow FF initialization | |
| # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 | |
| # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 | |
| module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
| if hasattr(module.wi, "bias") and module.wi.bias is not None: | |
| module.wi.bias.data.zero_() | |
| module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
| if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
| module.wo.bias.data.zero_() | |
| elif isinstance(module, T5DenseGatedActDense): | |
| module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
| if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | |
| module.wi_0.bias.data.zero_() | |
| module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
| if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: | |
| module.wi_1.bias.data.zero_() | |
| module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
| if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
| module.wo.bias.data.zero_() | |
| elif isinstance(module, T5Attention): | |
| # Mesh TensorFlow attention initialization to avoid scaling before softmax | |
| # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 | |
| d_model = self.config.d_model | |
| key_value_proj_dim = self.config.d_kv | |
| n_heads = self.config.num_heads | |
| module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) | |
| module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
| module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | |
| module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) | |
| if module.has_relative_attention_bias: | |
| module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (T5Attention, VT5Stack)): | |
| module.gradient_checkpointing = value | |
| def override_vision_model_wrapper(cls, model, config, vision_model_name, vision_model_params, torch_dtype): | |
| # this can be called via from_pretrained from a class w/ head or w/o head so we extract the beheaded model version | |
| beheaded_model = model.encoder | |
| cls.override_vision_model(beheaded_model, vision_model_name, vision_model_params, torch_dtype) | |
| beheaded_model.freeze_relevant_params(config) | |
| def _shift_right(self, input_ids): | |
| decoder_start_token_id = self.config.decoder_start_token_id | |
| pad_token_id = self.config.pad_token_id | |
| assert decoder_start_token_id is not None, ( | |
| "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id." | |
| " See T5 docs for more information" | |
| ) | |
| # shift inputs to the right | |
| if is_torch_fx_proxy(input_ids): | |
| # Item assignment is not supported natively for proxies. | |
| shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) | |
| shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) | |
| else: | |
| shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
| shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
| shifted_input_ids[..., 0] = decoder_start_token_id | |
| assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." | |
| # replace possible -100 values in labels by `pad_token_id` | |
| shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
| return shifted_input_ids | |
| class VT5Stack(VT5PreTrainedModel): | |
| def __init__(self, config, embed_tokens=None, vision_model=None): | |
| super().__init__(config) | |
| self.embed_tokens = embed_tokens | |
| self.is_decoder = config.is_decoder | |
| self.block = nn.ModuleList( | |
| [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] | |
| ) | |
| self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| if not self.is_decoder: | |
| self.cross_layer_interval = config.cross_layer_interval | |
| num_cross_layers = config.num_layers // self.cross_layer_interval | |
| self.gated_cross_attn_layers = nn.ModuleList( | |
| [VT5GatedCrossAttentionBlock(config) for i in range(num_cross_layers)] | |
| ) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.gradient_checkpointing = False | |
| # Load an uninitialized model and later in from_pretrained will load the pre-trained model - | |
| # this solves the losing of weights in `from_pretrained` on the main model | |
| if not self.is_decoder: | |
| self.vision_model = vision_model | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| self.freeze_relevant_params(config) | |
| def freeze_relevant_params(self, config=None): | |
| if config is None: | |
| config = self.config | |
| if config.freeze_text_layers: | |
| self.freeze_text_layers() | |
| if not self.is_decoder and config.freeze_vision_layers: | |
| freeze_model(self.vision_model) | |
| def freeze_text_layers(self): | |
| for module in [self.block, self.final_layer_norm]: | |
| freeze_model(module) | |
| def parallelize(self, device_map=None): | |
| # Check validity of device_map | |
| self.device_map = ( | |
| get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.block)) | |
| self.model_parallel = True | |
| self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) | |
| self.last_device = "cuda:" + str(max(self.device_map.keys())) | |
| # Load onto devices | |
| for k, v in self.device_map.items(): | |
| for layer in v: | |
| cuda_device = "cuda:" + str(k) | |
| self.block[layer] = self.block[layer].to(cuda_device) | |
| # Set embed_tokens to first layer | |
| self.embed_tokens = self.embed_tokens.to(self.first_device) | |
| # Set final layer norm to last device | |
| self.final_layer_norm = self.final_layer_norm.to(self.last_device) | |
| def deparallelize(self): | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.first_device = "cpu" | |
| self.last_device = "cpu" | |
| for i in range(len(self.block)): | |
| self.block[i] = self.block[i].to("cpu") | |
| self.embed_tokens = self.embed_tokens.to("cpu") | |
| self.final_layer_norm = self.final_layer_norm.to("cpu") | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, new_embeddings): | |
| self.embed_tokens = new_embeddings | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| inputs_embeds=None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| image_attention_mask: Optional[torch.Tensor] = None, | |
| head_mask=None, | |
| cross_attn_head_mask=None, | |
| past_key_values=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| # Model parallel | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.first_device) | |
| self.embed_tokens = self.embed_tokens.to(self.first_device) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| err_msg_prefix = "decoder_" if self.is_decoder else "" | |
| raise ValueError( | |
| f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" | |
| ) | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| err_msg_prefix = "decoder_" if self.is_decoder else "" | |
| raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") | |
| if inputs_embeds is None: | |
| assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" | |
| inputs_embeds = self.embed_tokens(input_ids) | |
| batch_size, seq_length = input_shape | |
| # required mask seq length can be calculated via length of past | |
| mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | |
| if use_cache is True: | |
| assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder" | |
| if attention_mask is None: | |
| attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | |
| if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: | |
| encoder_seq_length = encoder_hidden_states.shape[1] | |
| encoder_attention_mask = torch.ones( | |
| batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long | |
| ) | |
| # initialize past_key_values with `None` if past does not exist | |
| if past_key_values is None: | |
| past_key_values = [None] * len(self.block) | |
| # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
| # ourselves in which case we just need to make it broadcastable to all heads. | |
| extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | |
| # If a 2D or 3D attention mask is provided for the cross-attention | |
| # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if self.is_decoder and encoder_hidden_states is not None: | |
| encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
| encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | |
| if encoder_attention_mask is None: | |
| encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) | |
| encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
| else: | |
| encoder_extended_attention_mask = None | |
| # Prepare head mask if needed | |
| head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
| cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) | |
| present_key_value_states = () if use_cache else None | |
| all_hidden_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| all_cross_attentions = () if (output_attentions and self.is_decoder) else None | |
| position_bias = None | |
| encoder_decoder_position_bias = None | |
| hidden_states = self.dropout(inputs_embeds) | |
| if not self.is_decoder: | |
| pixel_values = pixel_values.to(dtype=self.dtype) # fp16 compatibility | |
| batch_size, num_images = pixel_values.size(0), pixel_values.size(1) | |
| pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) | |
| # Get sequence from the vision encoder | |
| image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state | |
| image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) | |
| image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) | |
| # Make image_attention_mask compatible with hidden states | |
| # TODO: these steps are overly complex -> refactor | |
| text_seq_len = image_attention_mask.size(1) | |
| image_attention_mask = image_attention_mask.unsqueeze(-1) | |
| image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) | |
| image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) | |
| if image_hidden_states is not None: | |
| image_batch_size, image_sequence_length, _ = image_hidden_states.size() | |
| image_hidden_shape = (image_batch_size, image_sequence_length) | |
| if image_attention_mask is None: | |
| image_attention_mask = torch.ones(image_hidden_shape, device=hidden_states.device) | |
| extended_image_attention_mask = self.invert_attention_mask(image_attention_mask) | |
| else: | |
| extended_image_attention_mask = None | |
| for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | |
| layer_head_mask = head_mask[i] | |
| cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
| # Model parallel | |
| if self.model_parallel: | |
| torch.cuda.set_device(hidden_states.device) | |
| # Ensure that attention_mask is always on the same device as hidden_states | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| if position_bias is not None: | |
| position_bias = position_bias.to(hidden_states.device) | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) | |
| if encoder_extended_attention_mask is not None: | |
| encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) | |
| if encoder_decoder_position_bias is not None: | |
| encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) | |
| if layer_head_mask is not None: | |
| layer_head_mask = layer_head_mask.to(hidden_states.device) | |
| if cross_attn_layer_head_mask is not None: | |
| cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| def vblock( | |
| main_block, | |
| hidden_states, | |
| attention_mask, | |
| position_bias, | |
| encoder_hidden_states, | |
| encoder_extended_attention_mask, | |
| encoder_decoder_position_bias, | |
| layer_head_mask, | |
| cross_attn_layer_head_mask, | |
| past_key_value, | |
| use_cache, | |
| output_attentions, | |
| image_hidden_states, | |
| image_attention_mask, | |
| layer_idx, | |
| cross_layer_interval, | |
| gated_cross_attn_layers, | |
| is_decoder, | |
| ): | |
| if not is_decoder and (layer_idx % cross_layer_interval == 0): | |
| xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] | |
| outputs = xblock( | |
| hidden_states, | |
| encoder_hidden_states=image_hidden_states, | |
| encoder_attention_mask=image_attention_mask, | |
| encoder_decoder_position_bias=None, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = outputs[0] | |
| layer_outputs = main_block( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| position_bias=position_bias, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_extended_attention_mask, | |
| encoder_decoder_position_bias=encoder_decoder_position_bias, | |
| layer_head_mask=layer_head_mask, | |
| cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| return layer_outputs | |
| if self.is_decoder: | |
| self.cross_layer_interval = None | |
| self.gated_cross_attn_layers = None | |
| image_hidden_states = None | |
| extended_image_attention_mask = None | |
| if self.gradient_checkpointing and self.training: | |
| # past_key_value is always None with gradient checkpointing | |
| past_key_value = None | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| layer_outputs = checkpoint( | |
| vblock, | |
| layer_module, | |
| hidden_states, | |
| extended_attention_mask, | |
| position_bias, | |
| encoder_hidden_states, | |
| encoder_extended_attention_mask, | |
| encoder_decoder_position_bias, | |
| head_mask[i], | |
| cross_attn_layer_head_mask, | |
| past_key_value, | |
| use_cache, | |
| output_attentions, | |
| image_hidden_states, | |
| extended_image_attention_mask, | |
| i, | |
| self.cross_layer_interval, | |
| self.gated_cross_attn_layers, | |
| self.is_decoder, | |
| ) | |
| else: | |
| layer_outputs = vblock( | |
| layer_module, | |
| hidden_states, | |
| attention_mask=extended_attention_mask, | |
| position_bias=position_bias, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_extended_attention_mask=encoder_extended_attention_mask, | |
| encoder_decoder_position_bias=encoder_decoder_position_bias, | |
| layer_head_mask=head_mask[i], | |
| cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| image_hidden_states=image_hidden_states, | |
| image_attention_mask=extended_image_attention_mask, | |
| layer_idx=i, | |
| cross_layer_interval=self.cross_layer_interval, | |
| gated_cross_attn_layers=self.gated_cross_attn_layers, | |
| is_decoder=self.is_decoder, | |
| ) | |
| # layer_outputs is a tuple with: | |
| # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
| if use_cache is False: | |
| layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
| hidden_states, present_key_value_state = layer_outputs[:2] | |
| # We share the position biases between the layers - the first layer store them | |
| # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), | |
| # (cross-attention position bias), (cross-attention weights) | |
| position_bias = layer_outputs[2] | |
| if self.is_decoder and encoder_hidden_states is not None: | |
| encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] | |
| # append next layer key value states | |
| if use_cache: | |
| present_key_value_states = present_key_value_states + (present_key_value_state,) | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[3],) | |
| if self.is_decoder: | |
| all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | |
| # Model Parallel: If it's the last layer for that device, put things on the next device | |
| if self.model_parallel: | |
| for k, v in self.device_map.items(): | |
| if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
| hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| # Add last layer | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [ | |
| hidden_states, | |
| present_key_value_states, | |
| all_hidden_states, | |
| all_attentions, | |
| all_cross_attentions, | |
| ] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=present_key_value_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_attentions, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| T5_START_DOCSTRING = r""" | |
| The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text | |
| Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan | |
| Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a | |
| text-to-text denoising generative setting. | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`T5Config`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| T5_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | |
| should be able to pad the inputs on both the right and the left. | |
| Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for detail. | |
| [What are input IDs?](../glossary#input-ids) | |
| To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). | |
| attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Indices of decoder input sequence tokens in the vocabulary. | |
| Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are decoder input IDs?](../glossary#decoder-input-ids) | |
| T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` | |
| is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). | |
| To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 | |
| Training](./t5#training). | |
| decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
| Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
| be used by default. | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | |
| 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | |
| 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
| `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
| Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | |
| `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | |
| the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
| past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
| Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
| If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
| don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
| `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
| representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
| input (see `past_key_values`). This is useful if you want more control over how to convert | |
| `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
| If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | |
| of `inputs_embeds`. | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| T5_ENCODER_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | |
| should be able to pad the inputs on both the right and the left. | |
| Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for detail. | |
| To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). | |
| attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
| __HEAD_MASK_WARNING_MSG = """ | |
| The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, | |
| `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. | |
| If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, | |
| num_heads)`. | |
| """ | |
| class VT5Model(VT5PreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [ | |
| r"encoder.embed_tokens.weight", | |
| r"decoder.embed_tokens.weight", | |
| ] | |
| _keys_to_ignore_on_load_unexpected = [ | |
| r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", | |
| ] | |
| def __init__(self, config: T5Config, vision_model=None): | |
| super().__init__(config) | |
| self.shared = DecoupledEmbedding( | |
| num_embeddings=config.vocab_size, | |
| num_additional_embeddings=config.additional_vocab_size, | |
| embedding_dim=config.d_model, | |
| partially_freeze=config.freeze_text_layers, | |
| ) | |
| encoder_config = copy.deepcopy(config) | |
| encoder_config.is_decoder = False | |
| encoder_config.use_cache = False | |
| encoder_config.is_encoder_decoder = False | |
| self.encoder = VT5Stack(encoder_config, self.shared, vision_model) | |
| decoder_config = copy.deepcopy(config) | |
| decoder_config.is_decoder = True | |
| decoder_config.is_encoder_decoder = False | |
| decoder_config.num_layers = config.num_decoder_layers | |
| self.decoder = VT5Stack(decoder_config, self.shared) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.freeze_relevant_params(config) | |
| def freeze_relevant_params(self, config=None): | |
| self.encoder.freeze_relevant_params(config) | |
| self.decoder.freeze_relevant_params(config) | |
| def parallelize(self, device_map=None): | |
| self.device_map = ( | |
| get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.encoder.block)) | |
| self.encoder.parallelize(self.device_map) | |
| self.decoder.parallelize(self.device_map) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| self.encoder.deparallelize() | |
| self.decoder.deparallelize() | |
| self.encoder = self.encoder.to("cpu") | |
| self.decoder = self.decoder.to("cpu") | |
| self.model_parallel = False | |
| self.device_map = None | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.shared | |
| def set_input_embeddings(self, new_embeddings): | |
| self.shared = new_embeddings | |
| self.encoder.set_input_embeddings(new_embeddings) | |
| self.decoder.set_input_embeddings(new_embeddings) | |
| def get_encoder(self): | |
| return self.encoder | |
| def get_decoder(self): | |
| return self.decoder | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| decoder_head_mask: Optional[torch.FloatTensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| decoder_inputs_embeds: Optional[torch.Tensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| image_attention_mask: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: | |
| r""" | |
| Returns: | |
| Example: | |
| ```python | |
| >>> from transformers import T5Tokenizer, T5Model | |
| >>> tokenizer = T5Tokenizer.from_pretrained("t5-small") | |
| >>> model = T5Model.from_pretrained("t5-small") | |
| >>> input_ids = tokenizer( | |
| ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" | |
| ... ).input_ids # Batch size 1 | |
| >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 | |
| >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. | |
| >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. | |
| >>> decoder_input_ids = model._shift_right(decoder_input_ids) | |
| >>> # forward pass | |
| >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
| >>> last_hidden_states = outputs.last_hidden_state | |
| ```""" | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
| if head_mask is not None and decoder_head_mask is None: | |
| if self.config.num_layers == self.config.num_decoder_layers: | |
| warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
| decoder_head_mask = head_mask | |
| # Encode if needed (training, first prediction pass) | |
| if encoder_outputs is None: | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| pixel_values=pixel_values, | |
| image_attention_mask=image_attention_mask, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
| ) | |
| hidden_states = encoder_outputs[0] | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| hidden_states = hidden_states.to(self.decoder.first_device) | |
| if decoder_input_ids is not None: | |
| decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(self.decoder.first_device) | |
| if decoder_attention_mask is not None: | |
| decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) | |
| # Decode | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| inputs_embeds=decoder_inputs_embeds, | |
| past_key_values=past_key_values, | |
| encoder_hidden_states=hidden_states, | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if not return_dict: | |
| return decoder_outputs + encoder_outputs | |
| return Seq2SeqModelOutput( | |
| last_hidden_state=decoder_outputs.last_hidden_state, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| class VT5ForConditionalGeneration(VT5PreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [ | |
| r"encoder.embed_tokens.weight", | |
| r"decoder.embed_tokens.weight", | |
| r"lm_head.weight", | |
| ] | |
| _keys_to_ignore_on_load_unexpected = [ | |
| r"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", | |
| ] | |
| def __init__(self, config: T5Config, vision_model=None): | |
| super().__init__(config) | |
| self.model_dim = config.d_model | |
| self.shared = DecoupledEmbedding( | |
| num_embeddings=config.vocab_size, | |
| num_additional_embeddings=config.additional_vocab_size, | |
| embedding_dim=config.d_model, | |
| partially_freeze=config.freeze_text_layers, | |
| ) | |
| encoder_config = copy.deepcopy(config) | |
| encoder_config.is_decoder = False | |
| encoder_config.use_cache = False | |
| encoder_config.is_encoder_decoder = False | |
| self.encoder = VT5Stack(encoder_config, self.shared, vision_model=vision_model) | |
| decoder_config = copy.deepcopy(config) | |
| decoder_config.is_decoder = True | |
| decoder_config.is_encoder_decoder = False | |
| decoder_config.num_layers = config.num_decoder_layers | |
| self.decoder = VT5Stack(decoder_config, self.shared) | |
| self.lm_head = DecoupledLinear( | |
| in_features=config.d_model, | |
| out_features=config.vocab_size, | |
| out_additional_features=config.additional_vocab_size, | |
| bias=False, | |
| partially_freeze=config.freeze_lm_head, | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.freeze_relevant_params(config) | |
| def freeze_relevant_params(self, config=None): | |
| self.encoder.freeze_relevant_params(config) | |
| self.decoder.freeze_relevant_params(config) | |
| def parallelize(self, device_map=None): | |
| self.device_map = ( | |
| get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.encoder.block)) | |
| self.encoder.parallelize(self.device_map) | |
| self.decoder.parallelize(self.device_map) | |
| self.lm_head = self.lm_head.to(self.decoder.first_device) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| self.encoder.deparallelize() | |
| self.decoder.deparallelize() | |
| self.encoder = self.encoder.to("cpu") | |
| self.decoder = self.decoder.to("cpu") | |
| self.lm_head = self.lm_head.to("cpu") | |
| self.model_parallel = False | |
| self.device_map = None | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.shared | |
| def set_input_embeddings(self, new_embeddings): | |
| self.shared = new_embeddings | |
| self.encoder.set_input_embeddings(new_embeddings) | |
| self.decoder.set_input_embeddings(new_embeddings) | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def tie_weights(self): | |
| """ | |
| Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding. | |
| """ | |
| output_embeddings = self.get_output_embeddings() | |
| input_embeddings = self.get_input_embeddings() | |
| if getattr(self.config, "tie_word_embeddings", True): | |
| output_embeddings.weight = input_embeddings.weight | |
| if input_embeddings.num_additional_embeddings > 0: | |
| assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings | |
| output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight | |
| if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): | |
| output_embeddings.out_features = input_embeddings.num_embeddings | |
| if hasattr(output_embeddings, "out_additional_features") and hasattr( | |
| input_embeddings, "num_additional_embeddings" | |
| ): | |
| output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings | |
| def get_encoder(self): | |
| return self.encoder | |
| def get_decoder(self): | |
| return self.decoder | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| decoder_input_ids: Optional[torch.LongTensor] = None, | |
| decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| decoder_head_mask: Optional[torch.FloatTensor] = None, | |
| cross_attn_head_mask: Optional[torch.Tensor] = None, | |
| encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| image_attention_mask: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | |
| config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | |
| labels in `[0, ..., config.vocab_size]` | |
| Returns: | |
| Examples: | |
| ```python | |
| >>> from transformers import T5Tokenizer, T5ForConditionalGeneration | |
| >>> tokenizer = T5Tokenizer.from_pretrained("t5-small") | |
| >>> model = T5ForConditionalGeneration.from_pretrained("t5-small") | |
| >>> # training | |
| >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids | |
| >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids | |
| >>> outputs = model(input_ids=input_ids, labels=labels) | |
| >>> loss = outputs.loss | |
| >>> logits = outputs.logits | |
| >>> # inference | |
| >>> input_ids = tokenizer( | |
| ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" | |
| ... ).input_ids # Batch size 1 | |
| >>> outputs = model.generate(input_ids) | |
| >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
| >>> # studies have shown that owning a dog is good for you. | |
| ```""" | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
| if head_mask is not None and decoder_head_mask is None: | |
| if self.config.num_layers == self.config.num_decoder_layers: | |
| warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
| decoder_head_mask = head_mask | |
| # Encode if needed (training, first prediction pass) | |
| if encoder_outputs is None: | |
| # Convert encoder inputs in embeddings if needed | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| pixel_values=pixel_values, | |
| image_attention_mask=image_attention_mask, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
| ) | |
| hidden_states = encoder_outputs[0] | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
| # get decoder inputs from shifting lm labels to the right | |
| decoder_input_ids = self._shift_right(labels) | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| hidden_states = hidden_states.to(self.decoder.first_device) | |
| if decoder_input_ids is not None: | |
| decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(self.decoder.first_device) | |
| if decoder_attention_mask is not None: | |
| decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) | |
| # Decode | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| inputs_embeds=decoder_inputs_embeds, | |
| past_key_values=past_key_values, | |
| encoder_hidden_states=hidden_states, | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = decoder_outputs[0] | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.encoder.first_device) | |
| self.lm_head = self.lm_head.to(self.encoder.first_device) | |
| sequence_output = sequence_output.to(self.lm_head.weight.device) | |
| if self.config.tie_word_embeddings: | |
| # Rescale output before projecting on vocab | |
| # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 | |
| sequence_output = sequence_output * (self.model_dim**-0.5) | |
| lm_logits = self.lm_head(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-100) | |
| loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
| # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 | |
| if not return_dict: | |
| output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
| return ((loss,) + output) if loss is not None else output | |
| return Seq2SeqLMOutput( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids, | |
| past=None, | |
| attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| use_cache=None, | |
| encoder_outputs=None, | |
| **kwargs, | |
| ): | |
| # cut decoder_input_ids if past is used | |
| if past is not None: | |
| input_ids = input_ids[:, -1:] | |
| return { | |
| "decoder_input_ids": input_ids, | |
| "past_key_values": past, | |
| "encoder_outputs": encoder_outputs, | |
| "attention_mask": attention_mask, | |
| "head_mask": head_mask, | |
| "decoder_head_mask": decoder_head_mask, | |
| "cross_attn_head_mask": cross_attn_head_mask, | |
| "use_cache": use_cache, | |
| } | |
| def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
| return self._shift_right(labels) | |
| def _reorder_cache(self, past, beam_idx): | |
| # if decoder past is not included in output | |
| # speedy decoding is disabled and no need to reorder | |
| if past is None: | |
| logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") | |
| return past | |
| reordered_decoder_past = () | |
| for layer_past_states in past: | |
| # get the correct batch idx from layer past batch dim | |
| # batch dim of `past` is at 2nd position | |
| reordered_layer_past_states = () | |
| for layer_past_state in layer_past_states: | |
| # need to set correct `past` for each of the four key / value states | |
| reordered_layer_past_states = reordered_layer_past_states + ( | |
| layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), | |
| ) | |
| assert reordered_layer_past_states[0].shape == layer_past_states[0].shape | |
| assert len(reordered_layer_past_states) == len(layer_past_states) | |
| reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) | |
| return reordered_decoder_past | |
| def get_model_tflops_per_batch_per_gpu(self, hparams, data_param, tokenizer, max_num_images): | |
| config_vl_model = self.config | |
| vloom_embed_size = config_vl_model.d_model | |
| vision_config = self.encoder.vision_model.config | |
| num_language_layers = config_vl_model.num_layers | |
| ffn_inner_size = config_vl_model.d_ff | |
| # Get vision model blocks infos | |
| vision_patch_size = vision_config.patch_size | |
| vision_hidden_size = vision_config.hidden_size | |
| num_vision_layers = vision_config.num_hidden_layers | |
| # The +1 is for the CLS token | |
| single_image_seq_len = (vision_config.image_size // vision_patch_size) ** 2 + 1 | |
| vision_exp_factor = vision_config.intermediate_size // vision_hidden_size | |
| # Get language and cross-att blocks infos | |
| num_cross_attn_layers = num_language_layers // config_vl_model.cross_layer_interval | |
| language_seq_len = data_param.max_seq_len | |
| language_exp_factor = (ffn_inner_size // vloom_embed_size) if ffn_inner_size is not None else 4 | |
| cross_att_exp_factor = (ffn_inner_size // vloom_embed_size) if ffn_inner_size is not None else 4 | |
| encoder_language_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_language_layers, | |
| batch_size=hparams.batch_size_per_gpu, | |
| q_seq_len=language_seq_len, | |
| k_seq_len=language_seq_len, | |
| hidden_size=vloom_embed_size, | |
| kv_in_dim=vloom_embed_size, | |
| ff_exp_factor=language_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| vocab_size=None, | |
| count_backward=True, # Always True regardless of freezing, because gradients are computed for cross-attentions | |
| use_grad_checkpointing=False, | |
| ) | |
| image_gated_cross_attention_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_cross_attn_layers, | |
| batch_size=hparams.batch_size_per_gpu, | |
| q_seq_len=language_seq_len, | |
| k_seq_len=single_image_seq_len * max_num_images, | |
| hidden_size=vloom_embed_size, | |
| kv_in_dim=vision_hidden_size, | |
| ff_exp_factor=cross_att_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| vocab_size=None, | |
| count_backward=True, | |
| use_grad_checkpointing=False, | |
| ) | |
| vision_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_vision_layers, | |
| batch_size=hparams.batch_size_per_gpu * max_num_images, | |
| q_seq_len=single_image_seq_len, | |
| k_seq_len=single_image_seq_len, | |
| hidden_size=vision_hidden_size, | |
| kv_in_dim=vision_hidden_size, | |
| ff_exp_factor=vision_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| vocab_size=None, | |
| count_backward=not hparams.model_params["freeze_vision_layers"], | |
| use_grad_checkpointing=False, | |
| ) | |
| _, target_seq_len = random_spans_helper( | |
| inputs_length=data_param.max_seq_len, | |
| noise_density=data_param.t5_mlm_noise_density, | |
| mean_noise_span_length=data_param.t5_mlm_mean_noise_span_length, | |
| extra_tokens_per_span_inputs=1, | |
| extra_tokens_per_span_targets=1, | |
| verbose=False, | |
| ) | |
| decoder_language_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=config_vl_model.num_decoder_layers, | |
| batch_size=hparams.batch_size_per_gpu, | |
| q_seq_len=target_seq_len, | |
| k_seq_len=target_seq_len, | |
| hidden_size=vloom_embed_size, | |
| kv_in_dim=vloom_embed_size, | |
| ff_exp_factor=language_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| vocab_size=tokenizer.vocab_size, | |
| count_backward=True, # Always True regardless of freezing, because gradients are computed for cross-attentions | |
| use_grad_checkpointing=False, | |
| ) | |
| encoder_decoder_cross_attention_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=config_vl_model.num_decoder_layers, | |
| batch_size=hparams.batch_size_per_gpu, | |
| q_seq_len=target_seq_len, | |
| k_seq_len=language_seq_len, | |
| hidden_size=vloom_embed_size, | |
| kv_in_dim=vloom_embed_size, | |
| ff_exp_factor=0, # There is only one pair of expansion linear layers per pair of self attention and cross attention blocks | |
| grad_acc_size=hparams.grad_acc_size, | |
| vocab_size=None, | |
| count_backward=True, | |
| use_grad_checkpointing=False, | |
| ) | |
| return ( | |
| encoder_language_tflops_per_batch_per_gpu | |
| + image_gated_cross_attention_tflops_per_batch_per_gpu | |
| + vision_tflops_per_batch_per_gpu | |
| + decoder_language_tflops_per_batch_per_gpu | |
| + encoder_decoder_cross_attention_tflops_per_batch_per_gpu | |
| ) | |