Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch OpenAI GPT-2 model.""" | |
| import math | |
| import os | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.cuda.amp import autocast | |
| from torch.nn import CrossEntropyLoss | |
| from transformers.activations import ACT2FN | |
| from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions | |
| from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer | |
| from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward | |
| from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
| from m4.models import DecoupledEmbedding, DecoupledLinear | |
| from m4.models.common import ( | |
| expand_inputs_for_generation, | |
| prepare_inputs_for_generation, | |
| update_model_kwargs_for_generation, | |
| ) | |
| from m4.models.custom_modules import VLOOMPreTrainedModelBase | |
| from m4.models.perceiver.perceiver import PerceiverResampler | |
| from m4.models.vgpt2.configuration_vgpt2 import VGPT2Config | |
| from m4.training.utils import ( | |
| compute_perceiver_tflops_per_batch_per_gpu, | |
| compute_tflops_per_batch_per_gpu, | |
| freeze_model, | |
| ) | |
| from m4.utils import logging | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "gpt2" | |
| _CONFIG_FOR_DOC = "VGPT2Config" | |
| _TOKENIZER_FOR_DOC = "GPT2Tokenizer" | |
| GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "gpt2", | |
| "gpt2-medium", | |
| "gpt2-large", | |
| "gpt2-xl", | |
| "distilgpt2", | |
| # See all GPT-2 models at https://huggingface.co/models?filter=gpt2 | |
| ] | |
| def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): | |
| """Load tf checkpoints in a pytorch model""" | |
| try: | |
| import re | |
| import tensorflow as tf | |
| except ImportError: | |
| logger.error( | |
| "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
| "https://www.tensorflow.org/install/ for installation instructions." | |
| ) | |
| raise | |
| tf_path = os.path.abspath(gpt2_checkpoint_path) | |
| logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
| # Load weights from TF model | |
| init_vars = tf.train.list_variables(tf_path) | |
| names = [] | |
| arrays = [] | |
| for name, shape in init_vars: | |
| logger.info(f"Loading TF weight {name} with shape {shape}") | |
| array = tf.train.load_variable(tf_path, name) | |
| names.append(name) | |
| arrays.append(array.squeeze()) | |
| for name, array in zip(names, arrays): | |
| name = name[6:] # skip "model/" | |
| name = name.split("/") | |
| pointer = model | |
| for m_name in name: | |
| if re.fullmatch(r"[A-Za-z]+\d+", m_name): | |
| scope_names = re.split(r"(\d+)", m_name) | |
| else: | |
| scope_names = [m_name] | |
| if scope_names[0] == "w" or scope_names[0] == "g": | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "b": | |
| pointer = getattr(pointer, "bias") | |
| elif scope_names[0] == "wpe" or scope_names[0] == "wte": | |
| pointer = getattr(pointer, scope_names[0]) | |
| pointer = getattr(pointer, "weight") | |
| else: | |
| pointer = getattr(pointer, scope_names[0]) | |
| if len(scope_names) >= 2: | |
| num = int(scope_names[1]) | |
| pointer = pointer[num] | |
| try: | |
| assert ( | |
| pointer.shape == array.shape | |
| ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
| except AssertionError as e: | |
| e.args += (pointer.shape, array.shape) | |
| raise | |
| logger.info(f"Initialize PyTorch weight {name}") | |
| pointer.data = torch.from_numpy(array) | |
| return model | |
| class GPT2Attention(nn.Module): | |
| def __init__(self, config, is_cross_attention=False, layer_idx=None): | |
| super().__init__() | |
| max_positions = config.max_position_embeddings | |
| self.register_buffer( | |
| "bias", | |
| torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view( | |
| 1, 1, max_positions, max_positions | |
| ), | |
| ) | |
| self.register_buffer("masked_bias", torch.tensor(-1e4)) | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = self.embed_dim // self.num_heads | |
| self.split_size = self.embed_dim | |
| if self.head_dim * self.num_heads != self.embed_dim: | |
| raise ValueError( | |
| f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| self.scale_attn_weights = config.scale_attn_weights | |
| self.is_cross_attention = is_cross_attention | |
| # Layer-wise attention scaling, reordering, and upcasting | |
| self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx | |
| self.layer_idx = layer_idx | |
| self.reorder_and_upcast_attn = config.reorder_and_upcast_attn | |
| if self.is_cross_attention: | |
| in_dim = self.embed_dim if not hasattr(config, "vision_embed_dim") else config.vision_embed_dim | |
| self.c_attn = Conv1D(2 * self.embed_dim, in_dim) | |
| self.q_attn = Conv1D(self.embed_dim, self.embed_dim) | |
| else: | |
| self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) | |
| self.c_proj = Conv1D(self.embed_dim, self.embed_dim) | |
| self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
| self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
| self.pruned_heads = set() | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) | |
| index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) | |
| # Prune conv1d layers | |
| self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) | |
| self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) | |
| # Update hyper params | |
| self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) | |
| self.num_heads = self.num_heads - len(heads) | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def _attn(self, query, key, value, attention_mask=None, head_mask=None): | |
| attn_weights = torch.matmul(query, key.transpose(-1, -2)) | |
| if self.scale_attn_weights: | |
| attn_weights = attn_weights / torch.tensor( | |
| value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device | |
| ) | |
| # Layer-wise attention scaling | |
| if self.scale_attn_by_inverse_layer_idx: | |
| attn_weights = attn_weights / float(self.layer_idx + 1) | |
| if not self.is_cross_attention: | |
| # if only "normal" attention layer implements causal mask | |
| query_length, key_length = query.size(-2), key.size(-2) | |
| causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool) | |
| mask_value = torch.finfo(attn_weights.dtype).min | |
| # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. | |
| # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` | |
| mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) | |
| attn_weights = torch.where(causal_mask, attn_weights, mask_value) | |
| if attention_mask is not None: | |
| # Apply the attention mask | |
| attn_weights = attn_weights + attention_mask | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise | |
| attn_weights = attn_weights.type(value.dtype) | |
| attn_weights = self.attn_dropout(attn_weights) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attn_weights = attn_weights * head_mask | |
| attn_output = torch.matmul(attn_weights, value) | |
| return attn_output, attn_weights | |
| def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None): | |
| # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) | |
| bsz, num_heads, q_seq_len, dk = query.size() | |
| _, _, k_seq_len, _ = key.size() | |
| # Preallocate attn_weights for `baddbmm` | |
| attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device) | |
| # Compute Scale Factor | |
| scale_factor = 1.0 | |
| if self.scale_attn_weights: | |
| scale_factor /= float(value.size(-1)) ** 0.5 | |
| if self.scale_attn_by_inverse_layer_idx: | |
| scale_factor /= float(self.layer_idx + 1) | |
| # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk)) | |
| with autocast(enabled=False): | |
| q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) | |
| attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) | |
| attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) | |
| if not self.is_cross_attention: | |
| # if only "normal" attention layer implements causal mask | |
| query_length, key_length = query.size(-2), key.size(-2) | |
| causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool() | |
| mask_value = torch.finfo(attn_weights.dtype).min | |
| # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. | |
| # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` | |
| mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) | |
| attn_weights = torch.where(causal_mask, attn_weights, mask_value) | |
| if attention_mask is not None: | |
| # Apply the attention mask | |
| attn_weights = attn_weights + attention_mask | |
| attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
| # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise | |
| if attn_weights.dtype != torch.float32: | |
| raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32") | |
| attn_weights = attn_weights.type(value.dtype) | |
| attn_weights = self.attn_dropout(attn_weights) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attn_weights = attn_weights * head_mask | |
| attn_output = torch.matmul(attn_weights, value) | |
| return attn_output, attn_weights | |
| def _split_heads(self, tensor, num_heads, attn_head_size): | |
| """ | |
| Splits hidden_size dim into attn_head_size and num_heads | |
| """ | |
| new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) | |
| tensor = tensor.view(new_shape) | |
| return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) | |
| def _merge_heads(self, tensor, num_heads, attn_head_size): | |
| """ | |
| Merges attn_head_size dim and num_attn_heads dim into hidden_size | |
| """ | |
| tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
| new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) | |
| return tensor.view(new_shape) | |
| def forward( | |
| self, | |
| hidden_states: Optional[Tuple[torch.FloatTensor]], | |
| layer_past: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: | |
| if encoder_hidden_states is not None: | |
| if not hasattr(self, "q_attn"): | |
| raise ValueError( | |
| "If class is used as cross attention, the weights `q_attn` have to be defined. " | |
| "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`." | |
| ) | |
| query = self.q_attn(hidden_states) | |
| key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) | |
| attention_mask = encoder_attention_mask | |
| else: | |
| query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) | |
| query = self._split_heads(query, self.num_heads, self.head_dim) | |
| key = self._split_heads(key, self.num_heads, self.head_dim) | |
| value = self._split_heads(value, self.num_heads, self.head_dim) | |
| if layer_past is not None: | |
| past_key, past_value = layer_past | |
| key = torch.cat((past_key, key), dim=-2) | |
| value = torch.cat((past_value, value), dim=-2) | |
| if use_cache is True: | |
| present = (key, value) | |
| else: | |
| present = None | |
| if self.reorder_and_upcast_attn: | |
| attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask) | |
| else: | |
| attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) | |
| attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) | |
| attn_output = self.c_proj(attn_output) | |
| attn_output = self.resid_dropout(attn_output) | |
| outputs = (attn_output, present) | |
| if output_attentions: | |
| outputs += (attn_weights,) | |
| return outputs # a, present, (attentions) | |
| class GPT2MLP(nn.Module): | |
| def __init__(self, intermediate_size, config): | |
| super().__init__() | |
| embed_dim = config.hidden_size | |
| self.c_fc = Conv1D(intermediate_size, embed_dim) | |
| self.c_proj = Conv1D(embed_dim, intermediate_size) | |
| self.act = ACT2FN[config.activation_function] | |
| self.dropout = nn.Dropout(config.resid_pdrop) | |
| def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: | |
| hidden_states = self.c_fc(hidden_states) | |
| hidden_states = self.act(hidden_states) | |
| hidden_states = self.c_proj(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| return hidden_states | |
| class GPT2Block(nn.Module): | |
| def __init__(self, config, layer_idx=None): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size | |
| self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.attn = GPT2Attention(config, layer_idx=layer_idx) | |
| self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| if config.add_cross_attention: | |
| self.crossattention = GPT2Attention(config, is_cross_attention=True, layer_idx=layer_idx) | |
| self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.mlp = GPT2MLP(inner_dim, config) | |
| def forward( | |
| self, | |
| hidden_states: Optional[Tuple[torch.FloatTensor]], | |
| layer_past: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | |
| residual = hidden_states | |
| hidden_states = self.ln_1(hidden_states) | |
| attn_outputs = self.attn( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| attn_output = attn_outputs[0] # output_attn: a, present, (attentions) | |
| outputs = attn_outputs[1:] | |
| # residual connection | |
| hidden_states = attn_output + residual | |
| if encoder_hidden_states is not None: | |
| # add one self-attention block for cross-attention | |
| if not hasattr(self, "crossattention"): | |
| raise ValueError( | |
| f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " | |
| "cross-attention layers by setting `config.add_cross_attention=True`" | |
| ) | |
| residual = hidden_states | |
| hidden_states = self.ln_cross_attn(hidden_states) | |
| cross_attn_outputs = self.crossattention( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| attn_output = cross_attn_outputs[0] | |
| # residual connection | |
| hidden_states = residual + attn_output | |
| outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights | |
| residual = hidden_states | |
| hidden_states = self.ln_2(hidden_states) | |
| feed_forward_hidden_states = self.mlp(hidden_states) | |
| # residual connection | |
| hidden_states = residual + feed_forward_hidden_states | |
| if use_cache: | |
| outputs = (hidden_states,) + outputs | |
| else: | |
| outputs = (hidden_states,) + outputs[1:] | |
| return outputs # hidden_states, present, (attentions, cross_attentions) | |
| class VGPT2GatedCrossAttentionBlock(nn.Module): | |
| def __init__(self, config, layer_idx=None): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size | |
| self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.cross_attn = GPT2Attention(config, is_cross_attention=True, layer_idx=layer_idx) | |
| self.mlp = GPT2MLP(inner_dim, config) | |
| self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.act = nn.Tanh() | |
| if config.alpha_initializer == "zeros": | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, hidden_size)) | |
| self.alpha_dense = nn.Parameter(torch.zeros(1, 1, hidden_size)) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter(torch.zeros(1)) | |
| self.alpha_dense = nn.Parameter(torch.zeros(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer == "ones": | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, hidden_size)) | |
| self.alpha_dense = nn.Parameter(torch.ones(1, 1, hidden_size)) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter(torch.ones(1)) | |
| self.alpha_dense = nn.Parameter(torch.ones(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer in {"normal", "gaussian", "random"}: | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, hidden_size)) | |
| ) | |
| self.alpha_dense = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, hidden_size)) | |
| ) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) | |
| ) | |
| self.alpha_dense = nn.Parameter(torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1))) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| else: | |
| raise NotImplementedError(f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!") | |
| def forward( | |
| self, | |
| hidden_states: Optional[Tuple[torch.FloatTensor]], | |
| layer_past: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| image_hidden_states: Optional[torch.Tensor] = None, | |
| image_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | |
| if image_hidden_states is None: | |
| raise ValueError( | |
| "`image_hidden_states` is required for VGPT2 cross attention module which are visual features to be" | |
| " conditioned on." | |
| ) | |
| # add one self-attention block for cross-attention | |
| # TODO(aps): Handle cross attention in the outputs | |
| # if not hasattr(self, "crossattention"): | |
| # raise ValueError( | |
| # f"If `image_hidden_states` are passed, {self} has to be instantiated with " | |
| # "cross-attention layers by setting `config.add_cross_attention=True`" | |
| # ) | |
| residual = hidden_states | |
| hidden_states = self.ln_1(hidden_states) | |
| cross_attn_outputs = self.cross_attn( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| encoder_hidden_states=image_hidden_states, | |
| encoder_attention_mask=image_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| attn_output = cross_attn_outputs[0] | |
| outputs = cross_attn_outputs[1:] | |
| # residual connection | |
| hidden_states = residual + self.act(self.alpha_cross_attn) * attn_output | |
| outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights | |
| residual = hidden_states | |
| hidden_states = self.ln_2(hidden_states) | |
| feed_forward_hidden_states = self.mlp(hidden_states) | |
| # residual connection | |
| hidden_states = residual + self.act(self.alpha_dense) * feed_forward_hidden_states | |
| if use_cache: | |
| outputs = (hidden_states,) + outputs | |
| else: | |
| outputs = (hidden_states,) + outputs[1:] | |
| return outputs # hidden_states, present, (attentions, cross_attentions) | |
| class VGPT2PreTrainedModel(VLOOMPreTrainedModelBase): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = VGPT2Config | |
| load_tf_weights = load_tf_weights_in_gpt2 | |
| base_model_prefix = "transformer" | |
| is_parallelizable = True | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["GPT2Block"] | |
| def __init__(self, *inputs, **kwargs): | |
| super().__init__(*inputs, **kwargs) | |
| def _init_weights(self, module): | |
| """Initialize the weights.""" | |
| if isinstance(module, (nn.Linear, Conv1D)): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: | |
| # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale | |
| # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. | |
| # > -- GPT-2 :: https://openai.com/blog/better-language-models/ | |
| # | |
| # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py | |
| for name, p in module.named_parameters(): | |
| if name == "c_proj.weight": | |
| # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block | |
| p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, VGPT2Model): | |
| module.gradient_checkpointing = value | |
| def override_vision_model_wrapper(cls, model, config, vision_model_name, vision_model_params, torch_dtype): | |
| # this can be called via from_pretrained from a class w/ head or w/o head so we extract the beheaded model version | |
| beheaded_model = model.transformer if hasattr(model, "transformer") else model | |
| cls.override_vision_model(beheaded_model, vision_model_name, vision_model_params, torch_dtype) | |
| beheaded_model.freeze_relevant_params(config) | |
| GPT2_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
| etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`VGPT2Config`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| GPT2_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
| `input_ids_length` = `sequence_length` if `past_key_values` is `None` else | |
| `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input | |
| sequence tokens in the vocabulary. | |
| If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
| `input_ids`. | |
| Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): | |
| Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
| `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
| their past given to this model should not be passed as `input_ids` as they have already been computed. | |
| attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for | |
| `past_key_values`. In other words, the `attention_mask` always has to have the length: | |
| `len(past_key_values) + len(input_ids)` | |
| [What are attention masks?](../glossary#attention-mask) | |
| token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): | |
| Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
| 1]`: | |
| - 0 corresponds to a *sentence A* token, | |
| - 1 corresponds to a *sentence B* token. | |
| [What are token type IDs?](../glossary#token-type-ids) | |
| position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
| config.max_position_embeddings - 1]`. | |
| [What are position IDs?](../glossary#position-ids) | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
| `past_key_values`). | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| PARALLELIZE_DOCSTRING = r""" | |
| This is an experimental feature and is a subject to change at a moment's notice. | |
| Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | |
| it will evenly distribute blocks across all devices. | |
| Args: | |
| device_map (`Dict[int, list]`, optional, defaults to None): | |
| A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | |
| automatically mapped to the first device (for esoteric reasons). That means that the first device should | |
| have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the | |
| following number of attention modules: | |
| - gpt2: 12 | |
| - gpt2-medium: 24 | |
| - gpt2-large: 36 | |
| - gpt2-xl: 48 | |
| Example: | |
| ```python | |
| # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules: | |
| model = GPT2LMHeadModel.from_pretrained("gpt2-xl") | |
| device_map = { | |
| 0: [0, 1, 2, 3, 4, 5, 6, 7, 8], | |
| 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], | |
| 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], | |
| 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], | |
| } | |
| model.parallelize(device_map) | |
| ``` | |
| """ | |
| DEPARALLELIZE_DOCSTRING = r""" | |
| Moves the model to cpu from a model parallel state. | |
| Example: | |
| ```python | |
| # On a 4 GPU machine with gpt2-large: | |
| model = GPT2LMHeadModel.from_pretrained("gpt2-large") | |
| device_map = { | |
| 0: [0, 1, 2, 3, 4, 5, 6, 7], | |
| 1: [8, 9, 10, 11, 12, 13, 14, 15], | |
| 2: [16, 17, 18, 19, 20, 21, 22, 23], | |
| 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], | |
| } | |
| model.parallelize(device_map) # Splits the model across several devices | |
| model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | |
| ``` | |
| """ | |
| class VGPT2Model(VGPT2PreTrainedModel): | |
| _keys_to_ignore_on_load_missing = ["attn.masked_bias"] | |
| def __init__(self, config, vision_model=None): | |
| super().__init__(config) | |
| self.embed_dim = config.hidden_size | |
| self.config = config | |
| self.wte = DecoupledEmbedding( | |
| num_embeddings=config.vocab_size, | |
| num_additional_embeddings=config.additional_vocab_size, | |
| embedding_dim=self.embed_dim, | |
| partially_freeze=config.freeze_text_layers, | |
| ) | |
| self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) | |
| self.drop = nn.Dropout(config.embd_pdrop) | |
| self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]) | |
| self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
| self.cross_layer_interval = config.cross_layer_interval | |
| num_cross_layers = config.num_hidden_layers // self.cross_layer_interval | |
| self.gated_cross_attn_layers = nn.ModuleList( | |
| [VGPT2GatedCrossAttentionBlock(config, layer_idx=i) for i in range(num_cross_layers)] | |
| ) | |
| # Perceiver Resampler | |
| if config.use_resampler: | |
| self.perceiver_resampler = PerceiverResampler( | |
| self.config, | |
| self.config.vision_embed_dim, | |
| config.resampler_depth, | |
| config.resampler_n_heads, | |
| config.resampler_head_dim, | |
| config.resampler_n_latents, | |
| ) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.gradient_checkpointing = False | |
| # will be vocab_size because of indices starting from 0 | |
| self.image_token_idx = config.image_token_index | |
| # Load an uninitialized model and later in from_pretrained will load the pre-trained model - | |
| # this solves the losing of weights in `from_pretrained` on the main model | |
| self.vision_model = vision_model | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| self.freeze_relevant_params(config) | |
| def freeze_relevant_params(self, config=None): | |
| if config is None: | |
| config = self.config | |
| if config.freeze_text_layers: | |
| self.freeze_text_layers() | |
| if config.freeze_vision_layers: | |
| freeze_model(self.vision_model) | |
| def freeze_text_layers(self): | |
| for module in [self.wpe, self.h, self.ln_f]: | |
| freeze_model(module) | |
| # TODO(aps): Implement later for VGPT2 | |
| def parallelize(self, device_map=None): | |
| # Check validity of device_map | |
| self.device_map = ( | |
| get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.h)) | |
| self.model_parallel = True | |
| self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) | |
| self.last_device = "cuda:" + str(max(self.device_map.keys())) | |
| self.wte = self.wte.to(self.first_device) | |
| self.wpe = self.wpe.to(self.first_device) | |
| # Load onto devices | |
| for k, v in self.device_map.items(): | |
| for block in v: | |
| cuda_device = "cuda:" + str(k) | |
| self.h[block] = self.h[block].to(cuda_device) | |
| # ln_f to last | |
| self.ln_f = self.ln_f.to(self.last_device) | |
| # TODO(aps): Implement later for VGPT2 | |
| def deparallelize(self): | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.first_device = "cpu" | |
| self.last_device = "cpu" | |
| self.wte = self.wte.to("cpu") | |
| self.wpe = self.wpe.to("cpu") | |
| for index in range(len(self.h)): | |
| self.h[index] = self.h[index].to("cpu") | |
| self.ln_f = self.ln_f.to("cpu") | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.wte | |
| def set_input_embeddings(self, new_embeddings): | |
| self.wte = new_embeddings | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.h[layer].attn.prune_heads(heads) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| image_embeddings: Optional[torch.FloatTensor] = None, | |
| image_attention_mask: Optional[torch.Tensor] = None, | |
| crossblock_head_mask: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| batch_size = input_ids.shape[0] | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| batch_size = inputs_embeds.shape[0] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| if token_type_ids is not None: | |
| token_type_ids = token_type_ids.view(-1, input_shape[-1]) | |
| if position_ids is not None: | |
| position_ids = position_ids.view(-1, input_shape[-1]) | |
| if past_key_values is None: | |
| past_length = 0 | |
| past_key_values = tuple([None] * len(self.h)) | |
| else: | |
| past_length = past_key_values[0][0].size(-2) | |
| if position_ids is None: | |
| position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) | |
| position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) | |
| # GPT2Attention mask. | |
| if attention_mask is not None: | |
| if batch_size <= 0: | |
| raise ValueError("batch_size has to be defined and > 0") | |
| attention_mask = attention_mask.view(batch_size, -1) | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # Sizes are [batch_size, 1, 1, to_seq_length] | |
| # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
| # this attention mask is more simple than the triangular masking of causal attention | |
| # used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
| attention_mask = attention_mask[:, None, None, :] | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and the dtype's smallest value for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility | |
| attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min | |
| # If a 2D or 3D attention mask is provided for the cross-attention | |
| # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if pixel_values is not None and image_embeddings is not None: | |
| raise ValueError("You cannot specify both pixel_values and image_embeddings at the same time") | |
| elif pixel_values is not None: | |
| pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) # fp16 compatibility | |
| batch_size, num_images = pixel_values.size(0), pixel_values.size(1) | |
| pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) | |
| # Get sequence from the vision encoder | |
| image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state | |
| elif image_embeddings is not None: | |
| batch_size, num_images, image_seq_len, image_hidden_size = image_embeddings.size() | |
| image_hidden_states = image_embeddings.to(dtype=self.dtype, device=input_ids.device) | |
| image_hidden_states = image_hidden_states.view(batch_size * num_images, image_seq_len, image_hidden_size) | |
| if self.config.use_resampler: | |
| image_hidden_states = self.perceiver_resampler(image_hidden_states) | |
| image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) | |
| image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) | |
| # Make image_attention_mask compatible with hidden states | |
| text_seq_len = image_attention_mask.size(1) | |
| image_attention_mask = image_attention_mask.unsqueeze(-1) | |
| image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) | |
| image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) | |
| if image_hidden_states is not None: | |
| image_batch_size, image_sequence_length, _ = image_hidden_states.size() | |
| image_hidden_shape = (image_batch_size, image_sequence_length) | |
| if image_attention_mask is None: | |
| image_attention_mask = torch.ones(image_hidden_shape, device=device) | |
| image_attention_mask = self.invert_attention_mask(image_attention_mask) | |
| else: | |
| image_attention_mask = None | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # head_mask has shape n_layer x batch x n_heads x N x N | |
| head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.wte(input_ids) | |
| position_embeds = self.wpe(position_ids) | |
| hidden_states = inputs_embeds + position_embeds | |
| if token_type_ids is not None: | |
| token_type_embeds = self.wte(token_type_ids) | |
| hidden_states = hidden_states + token_type_embeds | |
| hidden_states = self.drop(hidden_states) | |
| output_shape = input_shape + (hidden_states.size(-1),) | |
| presents = () if use_cache else None | |
| all_self_attentions = () if output_attentions else None | |
| all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None | |
| all_hidden_states = () if output_hidden_states else None | |
| for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
| # Model parallel | |
| if self.model_parallel: | |
| torch.cuda.set_device(hidden_states.device) | |
| # Ensure layer_past is on same device as hidden_states (might not be correct) | |
| if layer_past is not None: | |
| layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) | |
| # Ensure that attention_mask is always on the same device as hidden_states | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| if isinstance(head_mask, torch.Tensor): | |
| head_mask = head_mask.to(hidden_states.device) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| def vblock( | |
| main_block, | |
| hidden_states, | |
| layer_past, | |
| attention_mask, | |
| layer_head_mask, | |
| use_cache, | |
| output_attentions, | |
| image_hidden_states, | |
| image_attention_mask, | |
| layer_idx, | |
| cross_layer_interval, | |
| gated_cross_attn_layers, | |
| ): | |
| # TODO(aps): Add cross attention values to respective lists | |
| # TODO(aps): Add xblock head mask support | |
| if layer_idx % cross_layer_interval == 0: | |
| xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] | |
| outputs = xblock( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| image_hidden_states=image_hidden_states, | |
| image_attention_mask=image_attention_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = outputs[0] | |
| outputs = main_block( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| head_mask=layer_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| return outputs | |
| if self.gradient_checkpointing and self.training: | |
| layer_past = None | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| outputs = torch.utils.checkpoint.checkpoint( | |
| vblock, | |
| block, | |
| hidden_states, | |
| layer_past, | |
| attention_mask, | |
| head_mask[i], | |
| use_cache, | |
| output_attentions, | |
| image_hidden_states, | |
| image_attention_mask, | |
| i, | |
| self.cross_layer_interval, | |
| self.gated_cross_attn_layers, | |
| ) | |
| else: | |
| outputs = vblock( | |
| block, | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| layer_head_mask=head_mask[i], | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| image_hidden_states=image_hidden_states, | |
| image_attention_mask=image_attention_mask, | |
| layer_idx=i, | |
| cross_layer_interval=self.cross_layer_interval, | |
| gated_cross_attn_layers=self.gated_cross_attn_layers, | |
| ) | |
| hidden_states = outputs[0] | |
| if use_cache is True: | |
| presents = presents + (outputs[1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
| if self.config.add_cross_attention: | |
| all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) | |
| # Model Parallel: If it's the last layer for that device, put things on the next device | |
| if self.model_parallel: | |
| for k, v in self.device_map.items(): | |
| if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
| hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
| hidden_states = self.ln_f(hidden_states) | |
| hidden_states = hidden_states.view(output_shape) | |
| # Add last hidden state | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=presents, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| class VGPT2LMHeadModel(VGPT2PreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"] | |
| def __init__(self, config, vision_model=None): | |
| super().__init__(config) | |
| self.transformer = VGPT2Model(config, vision_model=vision_model) | |
| self.lm_head = DecoupledLinear( | |
| in_features=config.n_embd, | |
| out_features=config.vocab_size, | |
| out_additional_features=config.additional_vocab_size, | |
| bias=False, | |
| partially_freeze=config.freeze_lm_head, | |
| ) | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def parallelize(self, device_map=None): | |
| self.device_map = ( | |
| get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.transformer.h)) | |
| self.transformer.parallelize(self.device_map) | |
| self.lm_head = self.lm_head.to(self.transformer.first_device) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| self.transformer.deparallelize() | |
| self.transformer = self.transformer.to("cpu") | |
| self.lm_head = self.lm_head.to("cpu") | |
| self.model_parallel = False | |
| torch.cuda.empty_cache() | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def tie_weights(self): | |
| """ | |
| Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding. | |
| """ | |
| output_embeddings = self.get_output_embeddings() | |
| input_embeddings = self.get_input_embeddings() | |
| if getattr(self.config, "tie_word_embeddings", True): | |
| output_embeddings.weight = input_embeddings.weight | |
| if input_embeddings.num_additional_embeddings > 0: | |
| assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings | |
| output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight | |
| if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): | |
| output_embeddings.out_features = input_embeddings.num_embeddings | |
| if hasattr(output_embeddings, "out_additional_features") and hasattr( | |
| input_embeddings, "num_additional_embeddings" | |
| ): | |
| output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings | |
| def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
| return prepare_inputs_for_generation(input_ids, past=past, **kwargs) | |
| def _expand_inputs_for_generation( | |
| *args, | |
| **model_kwargs, | |
| ): | |
| return expand_inputs_for_generation(*args, **model_kwargs) | |
| def _update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False): | |
| return update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| token_type_ids: Optional[torch.LongTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| image_embeddings: Optional[torch.FloatTensor] = None, | |
| image_attention_mask: Optional[torch.Tensor] = None, | |
| crossblock_head_mask: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
| `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
| are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| token_type_ids=token_type_ids, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| pixel_values=pixel_values, | |
| image_embeddings=image_embeddings, | |
| image_attention_mask=image_attention_mask, | |
| crossblock_head_mask=crossblock_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.transformer.first_device) | |
| hidden_states = hidden_states.to(self.lm_head.weight.device) | |
| lm_logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| if attention_mask is not None: | |
| shift_attention_mask = attention_mask[..., 1:] | |
| shift_logits = lm_logits[..., :-1, :][shift_attention_mask != 0].contiguous() | |
| shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() | |
| else: | |
| shift_logits = lm_logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
| if not return_dict: | |
| output = (lm_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| cross_attentions=transformer_outputs.cross_attentions, | |
| ) | |
| def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: | |
| """ | |
| This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
| [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
| beam_idx at every generation step. | |
| """ | |
| return tuple( | |
| tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) | |
| for layer_past in past | |
| ) | |
| def get_model_tflops_per_batch_per_gpu(self, hparams, data_param, tokenizer, max_num_images): | |
| config_vl_model = self.config | |
| language_embed_size = config_vl_model.n_embd | |
| num_language_layers = config_vl_model.n_layer | |
| ffn_inner_size = config_vl_model.n_inner | |
| vision_config = self.transformer.vision_model.config | |
| if hasattr(vision_config, "vision_config"): | |
| vision_config = vision_config.vision_config | |
| # Get vision model blocks infos | |
| vision_patch_size = vision_config.patch_size | |
| vision_hidden_size = vision_config.hidden_size | |
| num_vision_layers = vision_config.num_hidden_layers | |
| # The +1 is for the CLS token | |
| single_image_seq_len = (vision_config.image_size // vision_patch_size) ** 2 + 1 | |
| vision_exp_factor = vision_config.intermediate_size // vision_hidden_size | |
| # Get language and cross-att blocks infos | |
| num_cross_attn_layers = num_language_layers // config_vl_model.cross_layer_interval | |
| language_seq_len = data_param.max_seq_len | |
| language_exp_factor = (ffn_inner_size // language_embed_size) if ffn_inner_size is not None else 4 | |
| cross_att_exp_factor = (ffn_inner_size // language_embed_size) if ffn_inner_size is not None else 4 | |
| k_v_cross_attn_seq_len = ( | |
| (self.config.resampler_n_latents * max_num_images) | |
| if self.config.use_resampler | |
| else (single_image_seq_len * max_num_images) | |
| ) | |
| language_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_language_layers, | |
| batch_size=hparams.batch_size_per_gpu, | |
| q_seq_len=language_seq_len, | |
| k_seq_len=language_seq_len, | |
| hidden_size=language_embed_size, | |
| kv_in_dim=language_embed_size, | |
| ff_exp_factor=language_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| swiglu=False, | |
| vocab_size=tokenizer.vocab_size, | |
| count_backward=True, # Always True regardless of freezing, because gradients are computed for cross-attentions | |
| use_grad_checkpointing=hparams.gradient_checkpointing, | |
| ) | |
| cross_attention_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_cross_attn_layers, | |
| batch_size=hparams.batch_size_per_gpu, | |
| q_seq_len=language_seq_len, | |
| k_seq_len=k_v_cross_attn_seq_len, | |
| hidden_size=language_embed_size, | |
| kv_in_dim=vision_hidden_size, | |
| ff_exp_factor=cross_att_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| swiglu=False, | |
| vocab_size=None, | |
| count_backward=True, | |
| use_grad_checkpointing=hparams.gradient_checkpointing, | |
| ) | |
| vision_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_vision_layers, | |
| batch_size=hparams.batch_size_per_gpu * max_num_images, | |
| q_seq_len=single_image_seq_len, | |
| k_seq_len=single_image_seq_len, | |
| hidden_size=vision_hidden_size, | |
| kv_in_dim=vision_hidden_size, | |
| ff_exp_factor=vision_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| swiglu=False, | |
| vocab_size=None, | |
| count_backward=not hparams.model_params["freeze_vision_layers"], | |
| use_grad_checkpointing=hparams.gradient_checkpointing, | |
| ) | |
| if self.config.use_resampler: | |
| perceiver_tflops_per_batch_per_gpu = compute_perceiver_tflops_per_batch_per_gpu( | |
| num_layers=self.config.resampler_depth, | |
| batch_size=hparams.batch_size_per_gpu * max_num_images, | |
| q_seq_len=self.config.resampler_n_latents, | |
| vision_embed_seq_len=single_image_seq_len, | |
| q_k_v_input_dim=vision_hidden_size, | |
| attention_hidden_size=self.config.resampler_n_heads * self.config.resampler_head_dim, | |
| ff_exp_factor=cross_att_exp_factor, | |
| count_backward=True, | |
| use_grad_checkpointing=hparams.gradient_checkpointing, | |
| ) | |
| flop_count = ( | |
| language_tflops_per_batch_per_gpu | |
| + cross_attention_tflops_per_batch_per_gpu | |
| + vision_tflops_per_batch_per_gpu | |
| + perceiver_tflops_per_batch_per_gpu | |
| ) | |
| else: | |
| flop_count = ( | |
| language_tflops_per_batch_per_gpu | |
| + cross_attention_tflops_per_batch_per_gpu | |
| + vision_tflops_per_batch_per_gpu | |
| ) | |
| return flop_count | |