Spaces:
Build error
Build error
| # coding=utf-8 | |
| # Copyright 2022 HuggingFace Inc. team and BigScience workshop. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch BLOOM model.""" | |
| import math | |
| import warnings | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss, LayerNorm | |
| from torch.nn import functional as F | |
| from transformers.file_utils import ( | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| ) | |
| from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions | |
| from m4.models import DecoupledEmbedding, DecoupledLinear | |
| from m4.models.common import ( | |
| expand_inputs_for_generation, | |
| prepare_inputs_for_generation, | |
| update_model_kwargs_for_generation, | |
| ) | |
| from m4.models.custom_modules import VLOOMPreTrainedModelBase | |
| from m4.models.perceiver.perceiver import PerceiverResampler | |
| from m4.models.vbloom.configuration_vbloom import VBloomConfig | |
| from m4.training.utils import ( | |
| compute_perceiver_tflops_per_batch_per_gpu, | |
| compute_tflops_per_batch_per_gpu, | |
| freeze_model, | |
| ) | |
| from m4.utils import logging | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "bigscience/bloom-560m" | |
| _CONFIG_FOR_DOC = "VBloomConfig" | |
| _TOKENIZER_FOR_DOC = "BloomTokenizerFast" | |
| BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "bigscience/bigscience-small-testing", | |
| "bigscience/bloom-560m", | |
| "bigscience/bloom-1b1", | |
| "bigscience/bloom-1b7", | |
| "bigscience/bloom-3b", | |
| "bigscience/bloom-7b1", | |
| "bigscience/bloom", | |
| ] | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int | |
| ) -> torch.BoolTensor: | |
| """ | |
| Make causal mask used for self-attention. | |
| """ | |
| batch_size, target_length = input_ids_shape | |
| mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) | |
| # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround | |
| seq_ids = torch.arange(target_length, device=device) | |
| mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] | |
| if past_key_values_length > 0: | |
| mask[:, :past_key_values_length] = False | |
| expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) | |
| return expanded_mask | |
| def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: | |
| """ | |
| Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. | |
| """ | |
| batch_size, src_length = mask.shape | |
| tgt_length = tgt_length if tgt_length is not None else src_length | |
| expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) | |
| return expanded_mask.expand(batch_size, 1, tgt_length, src_length) | |
| def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: | |
| """ | |
| Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it | |
| relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value | |
| `softmax(l+a) = softmax(l)`. Based on | |
| https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 | |
| TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. | |
| Args: | |
| Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) | |
| attention_mask (`torch.Tensor`): | |
| Token-wise attention mask, this should be of shape (batch_size, max_seq_len). | |
| num_heads (`int`, *required*): | |
| number of heads | |
| dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): | |
| dtype of the output tensor | |
| """ | |
| batch_size, seq_length = attention_mask.shape | |
| closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) | |
| base = torch.tensor( | |
| 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
| ) | |
| powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) | |
| slopes = torch.pow(base, powers) | |
| if closest_power_of_2 != num_heads: | |
| extra_base = torch.tensor( | |
| 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
| ) | |
| num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) | |
| extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) | |
| slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
| # Note: alibi will added to the attention bias that will be applied to the query, key product of attention | |
| # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) | |
| # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) | |
| # => the query_length dimension will then be broadcasted correctly | |
| # This is more or less identical to T5's relative position bias: | |
| # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 | |
| arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] | |
| alibi = slopes[..., None] * arange_tensor | |
| return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) | |
| def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: | |
| """ | |
| Dropout add function | |
| Args: | |
| x (`torch.tensor`, *required*): | |
| input tensor | |
| residual (`torch.tensor`, *required*): | |
| esidual tensor | |
| prob (`float`, *required*): | |
| dropout probability | |
| training (`bool`, *required*): | |
| training mode | |
| """ | |
| out = F.dropout(x, p=prob, training=training) | |
| out = residual + out | |
| return out | |
| def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to | |
| make the model jitable. | |
| Args: | |
| x (`torch.tensor`, *required*): | |
| input hidden states | |
| """ | |
| return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) | |
| def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + | |
| 0.3989423 * x * torch.exp(-0.5 * x * x) | |
| Args: | |
| g (`torch.tensor`, *required*): | |
| gradient output tensor | |
| x (`torch.tensor`, *required*): | |
| input tensor | |
| """ | |
| x = x[0] # x is a tuple of 1 element, needs to unpack it first | |
| tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) | |
| # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 | |
| ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) | |
| return ff * g | |
| class GeLUFunction(torch.autograd.Function): | |
| def forward(ctx, input: torch.Tensor) -> torch.Tensor: | |
| ctx.save_for_backward(input) | |
| return bloom_gelu_forward(input) | |
| def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: | |
| input = ctx.saved_tensors | |
| tmp = bloom_gelu_back(grad_output, input) | |
| return tmp | |
| class BloomGelu(nn.Module): | |
| """ | |
| BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model | |
| torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly | |
| copied from Megatron-DeepSpeed code and adapted for our needs | |
| See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 | |
| """ | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| if self.training: | |
| return GeLUFunction.apply(x) | |
| else: | |
| return bloom_gelu_forward(x) | |
| class BloomAttention(nn.Module): | |
| def __init__(self, config: VBloomConfig, is_cross_attention=False): | |
| super().__init__() | |
| self.pretraining_tp = config.pretraining_tp | |
| self.slow_but_exact = config.slow_but_exact | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.n_head | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.split_size = self.hidden_size | |
| self.hidden_dropout = config.hidden_dropout | |
| if self.head_dim * self.num_heads != self.hidden_size: | |
| raise ValueError( | |
| f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| # Layer-wise attention scaling | |
| self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) | |
| self.beta = 1.0 | |
| self.is_cross_attention = is_cross_attention | |
| if self.is_cross_attention: | |
| self.query = nn.Linear(self.hidden_size, 1 * self.hidden_size, bias=True) | |
| kv_input_dim = self.hidden_size if not hasattr(config, "vision_embed_dim") else config.vision_embed_dim | |
| self.key_value = nn.Linear(kv_input_dim, 2 * self.hidden_size, bias=True) | |
| else: | |
| self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True) | |
| self.dense = nn.Linear(self.hidden_size, self.hidden_size) | |
| self.attention_dropout = nn.Dropout(config.attention_dropout) | |
| if self.is_cross_attention: | |
| # The alpha stuff | |
| self.act = nn.Tanh() | |
| if config.alpha_initializer == "zeros": | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter(torch.zeros(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer == "ones": | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter(torch.ones(1, 1, self.hidden_size)) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter(torch.ones(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer in {"normal", "gaussian", "random"}: | |
| if config.alpha_type == "vector": | |
| self.alpha_cross_attn = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, self.hidden_size)) | |
| ) | |
| elif config.alpha_type == "float": | |
| self.alpha_cross_attn = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) | |
| ) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| else: | |
| raise NotImplementedError( | |
| f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!" | |
| ) | |
| def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """ | |
| Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory | |
| storage as `fused_qkv` | |
| Args: | |
| fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] | |
| Returns: | |
| query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] | |
| value: [batch_size, seq_length, num_heads, head_dim] | |
| """ | |
| batch_size, seq_length, n_times_hidden_size = fused_qkv.shape | |
| n = int(n_times_hidden_size / self.hidden_size) | |
| fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, n, self.head_dim) | |
| outputs = () | |
| for i in range(n): | |
| outputs += (fused_qkv[..., i, :],) | |
| return outputs | |
| def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Merge heads together over the last dimenstion | |
| Args: | |
| x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] | |
| Returns: | |
| torch.tensor: [batch_size, seq_length, num_heads * head_dim] | |
| """ | |
| # What we want to achieve is: | |
| # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim | |
| batch_size_and_num_heads, seq_length, _ = x.shape | |
| batch_size = batch_size_and_num_heads // self.num_heads | |
| # First view to decompose the batch size | |
| # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim | |
| x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) | |
| # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim | |
| x = x.permute(0, 2, 1, 3) | |
| # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim | |
| return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| residual: torch.Tensor, | |
| alibi: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_cache: bool = False, | |
| output_attentions: bool = False, | |
| ): | |
| if not self.is_cross_attention: | |
| fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] | |
| # 3 x [batch_size, seq_length, num_heads, head_dim] | |
| (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) | |
| else: | |
| if encoder_hidden_states is not None: | |
| attention_mask = encoder_attention_mask | |
| q = self.query(hidden_states) | |
| kv = self.key_value(encoder_hidden_states) | |
| query_layer = self._split_heads(q)[0] | |
| key_layer, value_layer = self._split_heads(kv) | |
| batch_size, q_length, _, _ = query_layer.shape | |
| _, kv_length, _, _ = key_layer.shape | |
| query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) | |
| key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, kv_length) | |
| value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, kv_length, self.head_dim) | |
| if layer_past is not None: | |
| past_key, past_value = layer_past | |
| # concatenate along seq_length dimension: | |
| # - key: [batch_size * self.num_heads, head_dim, kv_length] | |
| # - value: [batch_size * self.num_heads, kv_length, head_dim] | |
| key_layer = torch.cat((past_key, key_layer), dim=2) | |
| value_layer = torch.cat((past_value, value_layer), dim=1) | |
| _, _, kv_length = key_layer.shape | |
| if use_cache is True: | |
| present = (key_layer, value_layer) | |
| else: | |
| present = None | |
| # [batch_size * num_heads, q_length, kv_length] | |
| # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 | |
| if alibi is None: | |
| alibi = torch.empty( | |
| batch_size * self.num_heads, q_length, kv_length, dtype=query_layer.dtype, device=query_layer.device | |
| ) | |
| matmul_result = alibi.baddbmm( | |
| batch1=query_layer, | |
| batch2=key_layer, | |
| beta=0.0 if self.is_cross_attention else self.beta, | |
| alpha=self.inv_norm_factor, | |
| ) | |
| # change view to [batch_size, num_heads, q_length, kv_length] | |
| attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) | |
| # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] | |
| input_dtype = attention_scores.dtype | |
| # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` | |
| if input_dtype == torch.float16: | |
| attention_scores = attention_scores.to(torch.float) | |
| attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) | |
| attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) | |
| # [batch_size, num_heads, q_length, kv_length] | |
| attention_probs = self.attention_dropout(attention_probs) | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| # change view [batch_size x num_heads, q_length, kv_length] | |
| attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) | |
| # matmul: [batch_size * num_heads, q_length, head_dim] | |
| context_layer = torch.bmm(attention_probs_reshaped, value_layer) | |
| # change view [batch_size, num_heads, q_length, head_dim] | |
| context_layer = self._merge_heads(context_layer) | |
| # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 | |
| if self.pretraining_tp > 1 and self.slow_but_exact: | |
| slices = self.hidden_size / self.pretraining_tp | |
| output_tensor = torch.zeros_like(context_layer) | |
| for i in range(self.pretraining_tp): | |
| output_tensor = output_tensor + F.linear( | |
| context_layer[:, :, int(i * slices) : int((i + 1) * slices)], | |
| self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], | |
| ) | |
| else: | |
| output_tensor = self.dense(context_layer) | |
| if not self.is_cross_attention: | |
| output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) | |
| else: | |
| output_tensor = dropout_add( | |
| self.act(self.alpha_cross_attn) * output_tensor, residual, self.hidden_dropout, self.training | |
| ) | |
| outputs = (output_tensor, present) | |
| if output_attentions: | |
| outputs += (attention_probs,) | |
| return outputs | |
| class BloomMLP(nn.Module): | |
| def __init__(self, config: VBloomConfig, is_gated=False): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| self.pretraining_tp = config.pretraining_tp | |
| self.slow_but_exact = config.slow_but_exact | |
| self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size) | |
| self.gelu_impl = BloomGelu() | |
| self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size) | |
| self.hidden_dropout = config.hidden_dropout | |
| # The alpha stuff | |
| self.is_gated = is_gated | |
| if is_gated: | |
| self.act = nn.Tanh() | |
| if config.alpha_initializer == "zeros": | |
| if config.alpha_type == "vector": | |
| self.alpha_dense = nn.Parameter(torch.zeros(1, 1, hidden_size)) | |
| elif config.alpha_type == "float": | |
| self.alpha_dense = nn.Parameter(torch.zeros(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer == "ones": | |
| if config.alpha_type == "vector": | |
| self.alpha_dense = nn.Parameter(torch.ones(1, 1, hidden_size)) | |
| elif config.alpha_type == "float": | |
| self.alpha_dense = nn.Parameter(torch.ones(1)) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| elif config.alpha_initializer in {"normal", "gaussian", "random"}: | |
| if config.alpha_type == "vector": | |
| self.alpha_dense = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1, 1, hidden_size)) | |
| ) | |
| elif config.alpha_type == "float": | |
| self.alpha_dense = nn.Parameter( | |
| torch.normal(mean=0.0, std=config.alphas_initializer_range, size=(1)) | |
| ) | |
| else: | |
| raise ValueError(f"Unknown value for `alpha_type` ({config.alpha_type})") | |
| else: | |
| raise NotImplementedError( | |
| f"Alpha initialization scheme {config.alpha_initializer} not yet implemented!" | |
| ) | |
| def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) | |
| if self.pretraining_tp > 1 and self.slow_but_exact: | |
| intermediate_output = torch.zeros_like(residual) | |
| slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp | |
| for i in range(self.pretraining_tp): | |
| intermediate_output = intermediate_output + F.linear( | |
| hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], | |
| self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)], | |
| ) | |
| else: | |
| intermediate_output = self.dense_4h_to_h(hidden_states) | |
| if not self.is_gated: | |
| output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) | |
| else: | |
| output = dropout_add( | |
| self.act(self.alpha_dense) * intermediate_output, residual, self.hidden_dropout, self.training | |
| ) | |
| return output | |
| class BloomBlock(nn.Module): | |
| def __init__(self, config: VBloomConfig): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.num_heads = config.n_head | |
| self.self_attention = BloomAttention(config) | |
| self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.mlp = BloomMLP(config) | |
| self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | |
| self.hidden_dropout = config.hidden_dropout | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| alibi: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| use_cache: bool = False, | |
| output_attentions: bool = False, | |
| ): | |
| # hidden_states: [batch_size, seq_length, hidden_size] | |
| # Layer norm at the beginning of the transformer layer. | |
| layernorm_output = self.input_layernorm(hidden_states) | |
| # Layer norm post the self attention. | |
| if self.apply_residual_connection_post_layernorm: | |
| residual = layernorm_output | |
| else: | |
| residual = hidden_states | |
| # Self attention. | |
| attn_outputs = self.self_attention( | |
| layernorm_output, | |
| residual, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| alibi=alibi, | |
| head_mask=head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| attention_output = attn_outputs[0] | |
| outputs = attn_outputs[1:] | |
| layernorm_output = self.post_attention_layernorm(attention_output) | |
| # Get residual | |
| if self.apply_residual_connection_post_layernorm: | |
| residual = layernorm_output | |
| else: | |
| residual = attention_output | |
| # MLP. | |
| output = self.mlp(layernorm_output, residual) | |
| if use_cache: | |
| outputs = (output,) + outputs | |
| else: | |
| outputs = (output,) + outputs[1:] | |
| return outputs # hidden_states, present, attentions | |
| class VBloomGatedCrossAttentionBlock(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.num_heads = config.n_head | |
| self.cross_attention = BloomAttention(config, is_cross_attention=True) | |
| self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.gated_mlp = BloomMLP(config, is_gated=True) | |
| self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | |
| self.hidden_dropout = config.hidden_dropout | |
| def forward( | |
| self, | |
| hidden_states: Optional[Tuple[torch.FloatTensor]], | |
| layer_past: Optional[Tuple[torch.Tensor]] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| image_hidden_states: Optional[torch.Tensor] = None, | |
| image_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_cache: Optional[bool] = False, | |
| output_attentions: Optional[bool] = False, | |
| ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | |
| # hidden_states: [batch_size, seq_length, hidden_size] | |
| # Layer norm at the beginning of the transformer layer. | |
| layernorm_output = self.input_layernorm(hidden_states) | |
| # Layer norm post the self attention. | |
| if self.apply_residual_connection_post_layernorm: | |
| residual = layernorm_output | |
| else: | |
| residual = hidden_states | |
| # Self attention. | |
| attn_outputs = self.cross_attention( | |
| layernorm_output, | |
| residual, | |
| alibi=None, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| encoder_hidden_states=image_hidden_states, | |
| encoder_attention_mask=image_attention_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| attention_output = attn_outputs[0] | |
| outputs = attn_outputs[1:] | |
| layernorm_output = self.post_attention_layernorm(attention_output) | |
| # Get residual | |
| if self.apply_residual_connection_post_layernorm: | |
| residual = layernorm_output | |
| else: | |
| residual = attention_output | |
| # MLP. | |
| output = self.gated_mlp(layernorm_output, residual) | |
| if use_cache: | |
| outputs = (output,) + outputs | |
| else: | |
| outputs = (output,) + outputs[1:] | |
| return outputs # hidden_states, present, attentions | |
| class VBloomPreTrainedModel(VLOOMPreTrainedModelBase): | |
| _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = VBloomConfig | |
| base_model_prefix = "transformer" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["BloomBlock"] | |
| def __init__(self, *inputs, **kwargs): | |
| super().__init__(*inputs, **kwargs) | |
| def _init_weights(self, module: nn.Module): | |
| """Initialize the weights.""" | |
| if isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): | |
| if isinstance(module, VBloomModel): | |
| module.gradient_checkpointing = value | |
| def override_vision_model_wrapper(cls, model, config, vision_model_name, vision_model_params, torch_dtype): | |
| # this can be called via from_pretrained from a class w/ head or w/o head so we extract the beheaded model version | |
| beheaded_model = model.transformer if hasattr(model, "transformer") else model | |
| cls.override_vision_model(beheaded_model, vision_model_name, vision_model_params, torch_dtype) | |
| beheaded_model.freeze_relevant_params(config) | |
| BLOOM_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`BloomConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| BLOOM_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
| `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` | |
| (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. | |
| If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
| `input_ids`. | |
| Indices can be obtained using [`BloomTokenizerFast`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): | |
| Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
| `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
| their past given to this model should not be passed as `input_ids` as they have already been computed. | |
| Each element of `past_key_values` is a tuple (past_key, past_value): | |
| - past_key: [batch_size * num_heads, head_dim, kv_length] | |
| - past_value: [batch_size * num_heads, kv_length, head_dim] | |
| attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
| `past_key_values`). | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class VBloomModel(VBloomPreTrainedModel): | |
| def __init__(self, config: VBloomConfig, vision_model=None): | |
| super().__init__(config) | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.n_head | |
| # Embedding + LN Embedding | |
| self.word_embeddings = DecoupledEmbedding( | |
| num_embeddings=config.vocab_size, | |
| num_additional_embeddings=config.additional_vocab_size, | |
| embedding_dim=self.embed_dim, | |
| partially_freeze=config.freeze_text_layers, | |
| ) | |
| self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
| # Transformer blocks | |
| self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)]) | |
| # Final Layer Norm | |
| self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
| self.cross_layer_interval = config.cross_layer_interval | |
| num_cross_layers = config.num_hidden_layers // self.cross_layer_interval | |
| self.gated_cross_attn_layers = nn.ModuleList( | |
| [VBloomGatedCrossAttentionBlock(config) for i in range(num_cross_layers)] | |
| ) | |
| # Perceiver Resampler | |
| if config.use_resampler: | |
| self.perceiver_resampler = PerceiverResampler( | |
| self.config, | |
| self.config.vision_embed_dim, | |
| config.resampler_depth, | |
| config.resampler_n_heads, | |
| config.resampler_head_dim, | |
| config.resampler_n_latents, | |
| ) | |
| self.gradient_checkpointing = False | |
| # Load an uninitialized model and later in from_pretrained will load the pre-trained model - | |
| # this solves the losing of weights in `from_pretrained` on the main model | |
| self.vision_model = vision_model | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| self.freeze_relevant_params(config) | |
| def freeze_relevant_params(self, config=None): | |
| if config is None: | |
| config = self.config | |
| if config.freeze_text_layers: | |
| self.freeze_text_layers() | |
| if config.freeze_vision_layers: | |
| freeze_model(self.vision_model) | |
| def freeze_text_layers(self): | |
| for module in [self.word_embeddings_layernorm, self.h, self.ln_f]: | |
| freeze_model(module) | |
| def get_input_embeddings(self): | |
| return self.word_embeddings | |
| def _prepare_attn_mask( | |
| self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int | |
| ) -> torch.BoolTensor: | |
| # create causal mask | |
| # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] | |
| combined_attention_mask = None | |
| device = attention_mask.device | |
| _, src_length = input_shape | |
| if src_length > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, device=device, past_key_values_length=past_key_values_length | |
| ) | |
| # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] | |
| expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def set_input_embeddings(self, new_embeddings: torch.Tensor): | |
| self.word_embeddings = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.LongTensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| image_embeddings: Optional[torch.FloatTensor] = None, | |
| image_attention_mask: Optional[torch.Tensor] = None, | |
| crossblock_head_mask: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **deprecated_arguments, | |
| ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: | |
| if deprecated_arguments.pop("position_ids", False) is not False: | |
| # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
| warnings.warn( | |
| ( | |
| "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely" | |
| " ignore passing `position_ids`." | |
| ), | |
| FutureWarning, | |
| ) | |
| if len(deprecated_arguments) > 0: | |
| raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| batch_size, seq_length = input_ids.shape | |
| elif inputs_embeds is not None: | |
| batch_size, seq_length, _ = inputs_embeds.shape | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if past_key_values is None: | |
| past_key_values = tuple([None] * len(self.h)) | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape batch_size x num_heads x N x N | |
| # head_mask has shape n_layer x batch x num_heads x N x N | |
| head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| hidden_states = self.word_embeddings_layernorm(inputs_embeds) | |
| presents = () if use_cache else None | |
| all_self_attentions = () if output_attentions else None | |
| all_hidden_states = () if output_hidden_states else None | |
| # Compute alibi tensor: check build_alibi_tensor documentation | |
| seq_length_with_past = seq_length | |
| past_key_values_length = 0 | |
| if past_key_values[0] is not None: | |
| past_key_values_length = past_key_values[0][0].shape[2] | |
| seq_length_with_past = seq_length_with_past + past_key_values_length | |
| if attention_mask is None: | |
| attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) | |
| else: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) | |
| causal_mask = self._prepare_attn_mask( | |
| attention_mask, | |
| input_shape=(batch_size, seq_length), | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| if pixel_values is not None and image_embeddings is not None: | |
| raise ValueError("You cannot specify both pixel_values and image_embeddings at the same time") | |
| elif pixel_values is not None: | |
| pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) # fp16 compatibility | |
| batch_size, num_images = pixel_values.size(0), pixel_values.size(1) | |
| pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:]) | |
| # Get sequence from the vision encoder | |
| image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state | |
| elif image_embeddings is not None: | |
| batch_size, num_images, image_seq_len, image_hidden_size = image_embeddings.size() | |
| image_hidden_states = image_embeddings.to(dtype=self.dtype, device=input_ids.device) | |
| image_hidden_states = image_hidden_states.view(batch_size * num_images, image_seq_len, image_hidden_size) | |
| if self.config.use_resampler: | |
| image_hidden_states = self.perceiver_resampler(image_hidden_states) | |
| image_seq_len, image_hidden_size = image_hidden_states.size(1), image_hidden_states.size(2) | |
| image_hidden_states = image_hidden_states.view(batch_size, num_images * image_seq_len, image_hidden_size) | |
| # Make image_attention_mask compatible with hidden states | |
| text_seq_len = image_attention_mask.size(1) | |
| image_attention_mask = image_attention_mask.unsqueeze( | |
| -1 | |
| ) # TODO: something i don't understand here. why are the few last tokens not attending when there is just a single image? | |
| image_attention_mask = image_attention_mask.repeat(1, 1, 1, image_seq_len) | |
| image_attention_mask = image_attention_mask.view(batch_size, text_seq_len, num_images * image_seq_len) | |
| if image_hidden_states is not None: | |
| image_batch_size, image_sequence_length, _ = image_hidden_states.size() | |
| image_hidden_shape = (image_batch_size, image_sequence_length) | |
| if image_attention_mask is None: | |
| image_attention_mask = torch.ones(image_hidden_shape, device=hidden_states.device) | |
| # image_attention_mask = self.invert_attention_mask(image_attention_mask) | |
| image_attention_mask = image_attention_mask.to(torch.bool) | |
| image_attention_mask = image_attention_mask[:, None, :, :] | |
| else: | |
| image_attention_mask = None | |
| for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| def vblock( | |
| main_block, | |
| hidden_states, | |
| alibi, | |
| layer_past, | |
| attention_mask, | |
| layer_head_mask, | |
| use_cache, | |
| output_attentions, | |
| image_hidden_states, | |
| image_attention_mask, | |
| layer_idx, | |
| cross_layer_interval, | |
| gated_cross_attn_layers, | |
| ): | |
| if layer_idx % cross_layer_interval == 0: | |
| xblock = gated_cross_attn_layers[layer_idx // cross_layer_interval] | |
| outputs = xblock( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| image_hidden_states=image_hidden_states, | |
| image_attention_mask=image_attention_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = outputs[0] | |
| outputs = main_block( | |
| hidden_states, | |
| alibi=alibi, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| head_mask=layer_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| return outputs | |
| if self.gradient_checkpointing and self.training: | |
| layer_past = None | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| outputs = torch.utils.checkpoint.checkpoint( | |
| vblock, | |
| block, | |
| hidden_states, | |
| alibi, | |
| layer_past, | |
| causal_mask, | |
| head_mask[i], | |
| use_cache, | |
| output_attentions, | |
| image_hidden_states, | |
| image_attention_mask, | |
| i, | |
| self.cross_layer_interval, | |
| self.gated_cross_attn_layers, | |
| ) | |
| else: | |
| outputs = vblock( | |
| block, | |
| hidden_states, | |
| alibi=alibi, | |
| layer_past=layer_past, | |
| attention_mask=causal_mask, | |
| layer_head_mask=head_mask[i], | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| image_hidden_states=image_hidden_states, | |
| image_attention_mask=image_attention_mask, | |
| layer_idx=i, | |
| cross_layer_interval=self.cross_layer_interval, | |
| gated_cross_attn_layers=self.gated_cross_attn_layers, | |
| ) | |
| hidden_states = outputs[0] | |
| if use_cache is True: | |
| presents = presents + (outputs[1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
| # Add last hidden state | |
| hidden_states = self.ln_f(hidden_states) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=presents, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| class VBloomForCausalLM(VBloomPreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] | |
| def __init__(self, config: VBloomConfig, vision_model=None): | |
| super().__init__(config) | |
| self.transformer = VBloomModel(config, vision_model=vision_model) | |
| self.lm_head = DecoupledLinear( | |
| in_features=config.hidden_size, | |
| out_features=config.vocab_size, | |
| out_additional_features=config.additional_vocab_size, | |
| bias=False, | |
| partially_freeze=config.freeze_lm_head, | |
| ) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings: torch.Tensor): | |
| self.lm_head = new_embeddings | |
| def tie_weights(self): | |
| """ | |
| Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding. | |
| """ | |
| output_embeddings = self.get_output_embeddings() | |
| input_embeddings = self.get_input_embeddings() | |
| if getattr(self.config, "tie_word_embeddings", True): | |
| output_embeddings.weight = input_embeddings.weight | |
| if input_embeddings.num_additional_embeddings > 0: | |
| assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings | |
| output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight | |
| if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"): | |
| output_embeddings.out_features = input_embeddings.num_embeddings | |
| if hasattr(output_embeddings, "out_additional_features") and hasattr( | |
| input_embeddings, "num_additional_embeddings" | |
| ): | |
| output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings | |
| def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): | |
| inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs) | |
| unwanted_kwargs = ["position_ids", "token_type_ids"] | |
| for kwarg in unwanted_kwargs: | |
| inputs.pop(kwarg, None) | |
| return inputs | |
| def _expand_inputs_for_generation( | |
| *args, | |
| **model_kwargs, | |
| ): | |
| return expand_inputs_for_generation(*args, **model_kwargs) | |
| def _update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=False): | |
| return update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder=is_encoder_decoder) | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| pixel_values: Optional[torch.FloatTensor] = None, | |
| image_embeddings: Optional[torch.FloatTensor] = None, | |
| image_attention_mask: Optional[torch.Tensor] = None, | |
| crossblock_head_mask: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **deprecated_arguments, | |
| ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
| `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
| are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
| """ | |
| if deprecated_arguments.pop("position_ids", False) is not False: | |
| # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
| warnings.warn( | |
| ( | |
| "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely" | |
| " ignore passing `position_ids`." | |
| ), | |
| FutureWarning, | |
| ) | |
| if len(deprecated_arguments) > 0: | |
| raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| pixel_values=pixel_values, | |
| image_embeddings=image_embeddings, | |
| image_attention_mask=image_attention_mask, | |
| crossblock_head_mask=crossblock_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| lm_logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # Shift so that tokens < n predict n | |
| if attention_mask is not None: | |
| shift_attention_mask = attention_mask[..., 1:] | |
| shift_logits = lm_logits[..., :-1, :][shift_attention_mask != 0].contiguous() | |
| shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() | |
| else: | |
| shift_logits = lm_logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
| if not return_dict: | |
| output = (lm_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def _reorder_cache( | |
| past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | |
| """ | |
| This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
| [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
| beam_idx at every generation step. | |
| Output shares the same memory storage as `past`. | |
| """ | |
| batch_size_times_num_heads, head_dim, seq_length = past[0][0].shape | |
| batch_size = len(beam_idx) | |
| num_heads = batch_size_times_num_heads // batch_size | |
| # Get a copy of `beam_idx` on all the devices where we need those indices. | |
| device_to_beam_idx = { | |
| past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past | |
| } | |
| # key: layer_past[0] [batch_size * num_heads, head_dim, seq_length] | |
| # value: layer_past[1] [batch_size * num_heads, seq_length, head_dim] | |
| return tuple( | |
| ( | |
| layer_past[0] | |
| .view(batch_size, num_heads, head_dim, seq_length) | |
| .index_select(0, device_to_beam_idx[layer_past[0].device]) | |
| .view(batch_size_times_num_heads, head_dim, seq_length), | |
| layer_past[1] | |
| .view(batch_size, num_heads, seq_length, head_dim) | |
| .index_select(0, device_to_beam_idx[layer_past[0].device]) | |
| .view(batch_size_times_num_heads, seq_length, head_dim), | |
| ) | |
| for layer_past in past | |
| ) | |
| def get_model_tflops_per_batch_per_gpu(self, hparams, data_param, tokenizer, max_num_images): | |
| config_vl_model = self.config | |
| language_embed_size = config_vl_model.hidden_size | |
| vision_config = self.transformer.vision_model.config | |
| num_language_layers = config_vl_model.n_layer | |
| ffn_inner_size = 4 * config_vl_model.hidden_size | |
| # Get vision model blocks infos | |
| vision_patch_size = vision_config.patch_size | |
| vision_hidden_size = vision_config.hidden_size | |
| num_vision_layers = vision_config.num_hidden_layers | |
| # The +1 is for the CLS token | |
| single_image_seq_len = (vision_config.image_size // vision_patch_size) ** 2 + 1 | |
| vision_exp_factor = vision_config.intermediate_size // vision_hidden_size | |
| # Get language and cross-att blocks infos | |
| num_cross_attn_layers = num_language_layers // config_vl_model.cross_layer_interval | |
| language_seq_len = data_param.max_seq_len | |
| language_exp_factor = (ffn_inner_size // language_embed_size) if ffn_inner_size is not None else 4 | |
| cross_att_exp_factor = (ffn_inner_size // language_embed_size) if ffn_inner_size is not None else 4 | |
| k_v_cross_attn_seq_len = ( | |
| (self.config.resampler_n_latents * max_num_images) | |
| if self.config.use_resampler | |
| else (single_image_seq_len * max_num_images) | |
| ) | |
| language_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_language_layers, | |
| batch_size=hparams.batch_size_per_gpu, | |
| q_seq_len=language_seq_len, | |
| k_seq_len=language_seq_len, | |
| hidden_size=language_embed_size, | |
| kv_in_dim=language_embed_size, | |
| ff_exp_factor=language_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| swiglu=False, | |
| vocab_size=tokenizer.vocab_size, | |
| count_backward=True, # Always True regardless of freezing, because gradients are computed for cross-attentions | |
| use_grad_checkpointing=hparams.gradient_checkpointing, | |
| ) | |
| cross_attention_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_cross_attn_layers, | |
| batch_size=hparams.batch_size_per_gpu, | |
| q_seq_len=language_seq_len, | |
| k_seq_len=k_v_cross_attn_seq_len, | |
| hidden_size=language_embed_size, | |
| kv_in_dim=vision_hidden_size, | |
| ff_exp_factor=cross_att_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| swiglu=False, | |
| vocab_size=None, | |
| count_backward=True, | |
| use_grad_checkpointing=hparams.gradient_checkpointing, | |
| ) | |
| vision_tflops_per_batch_per_gpu = compute_tflops_per_batch_per_gpu( | |
| num_layers=num_vision_layers, | |
| batch_size=hparams.batch_size_per_gpu * max_num_images, | |
| q_seq_len=single_image_seq_len, | |
| k_seq_len=single_image_seq_len, | |
| hidden_size=vision_hidden_size, | |
| kv_in_dim=vision_hidden_size, | |
| ff_exp_factor=vision_exp_factor, | |
| grad_acc_size=hparams.grad_acc_size, | |
| swiglu=False, | |
| vocab_size=None, | |
| count_backward=not hparams.model_params["freeze_vision_layers"], | |
| use_grad_checkpointing=hparams.gradient_checkpointing, | |
| ) | |
| if self.config.use_resampler: | |
| perceiver_tflops_per_batch_per_gpu = compute_perceiver_tflops_per_batch_per_gpu( | |
| num_layers=self.config.resampler_depth, | |
| batch_size=hparams.batch_size_per_gpu * max_num_images, | |
| q_seq_len=self.config.resampler_n_latents, | |
| vision_embed_seq_len=single_image_seq_len, | |
| q_k_v_input_dim=vision_hidden_size, | |
| attention_hidden_size=self.config.resampler_n_heads * self.config.resampler_head_dim, | |
| ff_exp_factor=cross_att_exp_factor, | |
| count_backward=True, | |
| use_grad_checkpointing=hparams.gradient_checkpointing, | |
| ) | |
| flop_count = ( | |
| language_tflops_per_batch_per_gpu | |
| + cross_attention_tflops_per_batch_per_gpu | |
| + vision_tflops_per_batch_per_gpu | |
| + perceiver_tflops_per_batch_per_gpu | |
| ) | |
| else: | |
| flop_count = ( | |
| language_tflops_per_batch_per_gpu | |
| + cross_attention_tflops_per_batch_per_gpu | |
| + vision_tflops_per_batch_per_gpu | |
| ) | |
| return flop_count | |