ysharma's picture
ysharma HF staff
Update app.py
71882f2 verified
raw
history blame
12.5 kB
from crewai import Agent, Task, Crew
import gradio as gr
import asyncio
from typing import List, Dict, Any, Generator
from langchain_openai import ChatOpenAI
import queue
import threading
import os
class AgentMessageQueue:
def __init__(self):
self.message_queue = queue.Queue()
self.last_agent = None
def add_message(self, message: Dict):
print(f"Adding message to queue: {message}") # Debug print
self.message_queue.put(message)
def get_messages(self) -> List[Dict]:
messages = []
while not self.message_queue.empty():
messages.append(self.message_queue.get())
return messages
class ArticleCrew:
def __init__(self, api_key: str = None):
self.api_key = api_key
self.message_queue = AgentMessageQueue()
self.planner = None
self.writer = None
self.editor = None
self.current_agent = None
self.final_article = None
def initialize_agents(self, topic: str):
if not self.api_key:
raise ValueError("OpenAI API key is required")
os.environ["OPENAI_API_KEY"] = self.api_key
llm = ChatOpenAI(temperature=0.7, model="gpt-4")
self.planner = Agent(
role="Content Planner",
goal=f"Plan engaging and factually accurate content on {topic}",
backstory="Expert content planner with focus on creating engaging outlines",
allow_delegation=False,
verbose=True,
llm=llm
)
self.writer = Agent(
role="Content Writer",
goal=f"Write insightful and factually accurate piece about {topic}",
backstory="Expert content writer with focus on engaging articles",
allow_delegation=False,
verbose=True,
llm=llm
)
self.editor = Agent(
role="Editor",
goal="Polish and refine the article",
backstory="Expert editor with eye for detail and clarity",
allow_delegation=False,
verbose=True,
llm=llm
)
def create_tasks(self, topic: str) -> List[Task]:
planner_task = Task(
description=f"""Create a detailed content plan for an article about {topic} by:
1. Prioritizing the latest trends, key players, and noteworthy news
2. Identifying the target audience, considering their interests and pain points
3. Developing a detailed content outline including introduction, key points, and call to action
4. Including SEO keywords and relevant data or sources""",
expected_output="A comprehensive content plan with outline, keywords, and target audience analysis",
agent=self.planner
)
writer_task = Task(
description="""Based on the provided content plan:
1. Use the content plan to craft a compelling blog post
2. Incorporate SEO keywords naturally
3. Ensure sections/subtitles are properly named in an engaging manner
4. Create proper structure with introduction, body, and conclusion
5. Proofread for grammatical errors""",
expected_output="A well-written article draft following the content plan",
agent=self.writer
)
editor_task = Task(
description="""Review the written article by:
1. Checking for clarity and coherence
2. Correcting any grammatical errors and typos
3. Ensuring consistent tone and style
4. Verifying proper formatting and structure""",
expected_output="A polished, final version of the article ready for publication",
agent=self.editor
)
return [planner_task, writer_task, editor_task]
async def process_article(self, topic: str) -> Generator[List[Dict], None, None]:
def add_agent_messages(agent_name: str, tasks: str, emoji: str = "πŸ€–"):
# Add agent header
self.message_queue.add_message({
"role": "assistant",
"content": agent_name,
"metadata": {"title": f"{emoji} {agent_name}"}
})
# Add task description
self.message_queue.add_message({
"role": "assistant",
"content": tasks,
"metadata": {"title": f"πŸ“‹ Task for {agent_name}"}
})
def setup_next_agent(current_agent: str) -> None:
agent_sequence = {
"Content Planner": ("Content Writer", """1. Use the content plan to craft a compelling blog post
2. Incorporate SEO keywords naturally
3. Ensure sections/subtitles are properly named in an engaging manner
4. Create proper structure with introduction, body, and conclusion
5. Proofread for grammatical errors"""),
"Content Writer": ("Editor", """1. Review the article for clarity and coherence
2. Check for grammatical errors and typos
3. Ensure consistent tone and style
4. Verify proper formatting and structure""")
}
if current_agent in agent_sequence:
next_agent, tasks = agent_sequence[current_agent]
self.current_agent = next_agent
add_agent_messages(next_agent, tasks)
def task_callback(task_output) -> None:
print(f"Task callback received: {task_output}") # Debug print
# Extract content from raw output
raw_output = task_output.raw
if "## Final Answer:" in raw_output:
content = raw_output.split("## Final Answer:")[1].strip()
else:
content = raw_output.strip()
# Handle the output based on current agent
if self.current_agent == "Editor":
# Not going to show editor's output with metadata
# Instead, I am showing assistant message as the final article
self.message_queue.add_message({
"role": "assistant",
"content": "Final article is ready!",
"metadata": {"title": "πŸ“ Final Article"}
})
# Convert common markdown patterns to Gradio-compatible markdown
formatted_content = content
# Ensure proper spacing for headers
formatted_content = formatted_content.replace("\n#", "\n\n#")
# Ensure proper spacing for lists
formatted_content = formatted_content.replace("\n-", "\n\n-")
formatted_content = formatted_content.replace("\n*", "\n\n*")
formatted_content = formatted_content.replace("\n1.", "\n\n1.")
# Ensure proper spacing for paragraphs
formatted_content = formatted_content.replace("\n\n\n", "\n\n")
# Add the final article content without metadata
self.message_queue.add_message({
"role": "assistant",
"content": formatted_content
})
else:
# For other agents, show their output with metadata
self.message_queue.add_message({
"role": "assistant",
"content": content,
"metadata": {"title": f"✨ Output from {self.current_agent}"}
})
# Setup next agent
setup_next_agent(self.current_agent)
def step_callback(output: Any) -> None:
print(f"Step callback received: {output}") # Debug print
# We'll only use step_callback for logging purposes now
pass
try:
self.initialize_agents(topic)
self.current_agent = "Content Planner"
# Start process
yield [{
"role": "assistant",
"content": "Starting work on your article...",
"metadata": {"title": "πŸš€ Process Started"}
}]
# Initialize first agent
add_agent_messages("Content Planner",
"""1. Prioritize the latest trends, key players, and noteworthy news
2. Identify the target audience, considering their interests and pain points
3. Develop a detailed content outline including introduction, key points, and call to action
4. Include SEO keywords and relevant data or sources""")
crew = Crew(
agents=[self.planner, self.writer, self.editor],
tasks=self.create_tasks(topic),
verbose=True,
step_callback=step_callback,
task_callback=task_callback
)
def run_crew():
try:
crew.kickoff()
except Exception as e:
print(f"Error in crew execution: {str(e)}") # Debug print
self.message_queue.add_message({
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "❌ Error"}
})
thread = threading.Thread(target=run_crew)
thread.start()
while thread.is_alive() or not self.message_queue.message_queue.empty():
messages = self.message_queue.get_messages()
if messages:
print(f"Yielding messages: {messages}") # Debug print
yield messages
await asyncio.sleep(0.1)
except Exception as e:
print(f"Error in process_article: {str(e)}") # Debug print
yield [{
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "❌ Error"}
}]
# Gradio code
def create_demo():
article_crew = None
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“ AI Article Writing Crew")
openai_api_key = gr.Textbox(
label='OpenAI API Key',
type='password',
placeholder='Enter your OpenAI API key...',
interactive=True
)
chatbot = gr.Chatbot(
label="Writing Process",
height=700,
type="messages",
show_label=True,
visible=False,
bubble_full_width=False, # Allow messages to wrap naturally
render_markdown=True # Enable markdown rendering
)
with gr.Row(equal_height=True):
topic = gr.Textbox(
label="Article Topic",
placeholder="Enter topic...",
scale=4,
visible=False
)
btn = gr.Button("Write Article", variant="primary", scale=1, visible=False)
async def process_input(topic, history, api_key):
nonlocal article_crew
if not api_key:
history = history or []
history.append({
"role": "assistant",
"content": "Please provide an OpenAI API key.",
"metadata": {"title": "❌ Error"}
})
yield history
return
if article_crew is None:
article_crew = ArticleCrew(api_key=api_key)
history = history or []
history.append({"role": "user", "content": f"Write an article about: {topic}"})
yield history
try:
async for messages in article_crew.process_article(topic):
history.extend(messages)
yield history
except Exception as e:
history.append({
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "❌ Error"}
})
yield history
def show_interface():
return {
openai_api_key: gr.Textbox(visible=False),
chatbot: gr.Chatbot(visible=True),
topic: gr.Textbox(visible=True),
btn: gr.Button(visible=True)
}
openai_api_key.submit(show_interface, None, [openai_api_key, chatbot, topic, btn])
btn.click(process_input, [topic, chatbot, openai_api_key], [chatbot])
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch(debug=True)