|
from crewai import Agent, Task, Crew |
|
import gradio as gr |
|
import asyncio |
|
from typing import List, Dict, Any, Generator |
|
from langchain_openai import ChatOpenAI |
|
import queue |
|
import threading |
|
import os |
|
|
|
class AgentMessageQueue: |
|
def __init__(self): |
|
self.message_queue = queue.Queue() |
|
self.last_agent = None |
|
|
|
def add_message(self, message: Dict): |
|
print(f"Adding message to queue: {message}") |
|
self.message_queue.put(message) |
|
|
|
def get_messages(self) -> List[Dict]: |
|
messages = [] |
|
while not self.message_queue.empty(): |
|
messages.append(self.message_queue.get()) |
|
return messages |
|
|
|
class ArticleCrew: |
|
def __init__(self, api_key: str = None): |
|
self.api_key = api_key |
|
self.message_queue = AgentMessageQueue() |
|
self.planner = None |
|
self.writer = None |
|
self.editor = None |
|
self.current_agent = None |
|
self.final_article = None |
|
|
|
def initialize_agents(self, topic: str): |
|
if not self.api_key: |
|
raise ValueError("OpenAI API key is required") |
|
|
|
os.environ["OPENAI_API_KEY"] = self.api_key |
|
llm = ChatOpenAI(temperature=0.7, model="gpt-4") |
|
|
|
self.planner = Agent( |
|
role="Content Planner", |
|
goal=f"Plan engaging and factually accurate content on {topic}", |
|
backstory="Expert content planner with focus on creating engaging outlines", |
|
allow_delegation=False, |
|
verbose=True, |
|
llm=llm |
|
) |
|
|
|
self.writer = Agent( |
|
role="Content Writer", |
|
goal=f"Write insightful and factually accurate piece about {topic}", |
|
backstory="Expert content writer with focus on engaging articles", |
|
allow_delegation=False, |
|
verbose=True, |
|
llm=llm |
|
) |
|
|
|
self.editor = Agent( |
|
role="Editor", |
|
goal="Polish and refine the article", |
|
backstory="Expert editor with eye for detail and clarity", |
|
allow_delegation=False, |
|
verbose=True, |
|
llm=llm |
|
) |
|
|
|
def create_tasks(self, topic: str) -> List[Task]: |
|
planner_task = Task( |
|
description=f"""Create a detailed content plan for an article about {topic} by: |
|
1. Prioritizing the latest trends, key players, and noteworthy news |
|
2. Identifying the target audience, considering their interests and pain points |
|
3. Developing a detailed content outline including introduction, key points, and call to action |
|
4. Including SEO keywords and relevant data or sources""", |
|
expected_output="A comprehensive content plan with outline, keywords, and target audience analysis", |
|
agent=self.planner |
|
) |
|
|
|
writer_task = Task( |
|
description="""Based on the provided content plan: |
|
1. Use the content plan to craft a compelling blog post |
|
2. Incorporate SEO keywords naturally |
|
3. Ensure sections/subtitles are properly named in an engaging manner |
|
4. Create proper structure with introduction, body, and conclusion |
|
5. Proofread for grammatical errors""", |
|
expected_output="A well-written article draft following the content plan", |
|
agent=self.writer |
|
) |
|
|
|
editor_task = Task( |
|
description="""Review the written article by: |
|
1. Checking for clarity and coherence |
|
2. Correcting any grammatical errors and typos |
|
3. Ensuring consistent tone and style |
|
4. Verifying proper formatting and structure""", |
|
expected_output="A polished, final version of the article ready for publication", |
|
agent=self.editor |
|
) |
|
|
|
return [planner_task, writer_task, editor_task] |
|
|
|
async def process_article(self, topic: str) -> Generator[List[Dict], None, None]: |
|
def add_agent_messages(agent_name: str, tasks: str, emoji: str = "π€"): |
|
|
|
self.message_queue.add_message({ |
|
"role": "assistant", |
|
"content": agent_name, |
|
"metadata": {"title": f"{emoji} {agent_name}"} |
|
}) |
|
|
|
|
|
self.message_queue.add_message({ |
|
"role": "assistant", |
|
"content": tasks, |
|
"metadata": {"title": f"π Task for {agent_name}"} |
|
}) |
|
|
|
def setup_next_agent(current_agent: str) -> None: |
|
agent_sequence = { |
|
"Content Planner": ("Content Writer", """1. Use the content plan to craft a compelling blog post |
|
2. Incorporate SEO keywords naturally |
|
3. Ensure sections/subtitles are properly named in an engaging manner |
|
4. Create proper structure with introduction, body, and conclusion |
|
5. Proofread for grammatical errors"""), |
|
|
|
"Content Writer": ("Editor", """1. Review the article for clarity and coherence |
|
2. Check for grammatical errors and typos |
|
3. Ensure consistent tone and style |
|
4. Verify proper formatting and structure""") |
|
} |
|
|
|
if current_agent in agent_sequence: |
|
next_agent, tasks = agent_sequence[current_agent] |
|
self.current_agent = next_agent |
|
add_agent_messages(next_agent, tasks) |
|
|
|
|
|
def task_callback(task_output) -> None: |
|
print(f"Task callback received: {task_output}") |
|
|
|
|
|
raw_output = task_output.raw |
|
if "## Final Answer:" in raw_output: |
|
content = raw_output.split("## Final Answer:")[1].strip() |
|
else: |
|
content = raw_output.strip() |
|
|
|
|
|
if self.current_agent == "Editor": |
|
|
|
|
|
self.message_queue.add_message({ |
|
"role": "assistant", |
|
"content": "Final article is ready!", |
|
"metadata": {"title": "π Final Article"} |
|
}) |
|
|
|
|
|
formatted_content = content |
|
|
|
formatted_content = formatted_content.replace("\n#", "\n\n#") |
|
|
|
formatted_content = formatted_content.replace("\n-", "\n\n-") |
|
formatted_content = formatted_content.replace("\n*", "\n\n*") |
|
formatted_content = formatted_content.replace("\n1.", "\n\n1.") |
|
|
|
formatted_content = formatted_content.replace("\n\n\n", "\n\n") |
|
|
|
|
|
self.message_queue.add_message({ |
|
"role": "assistant", |
|
"content": formatted_content |
|
}) |
|
else: |
|
|
|
self.message_queue.add_message({ |
|
"role": "assistant", |
|
"content": content, |
|
"metadata": {"title": f"β¨ Output from {self.current_agent}"} |
|
}) |
|
|
|
setup_next_agent(self.current_agent) |
|
|
|
def step_callback(output: Any) -> None: |
|
print(f"Step callback received: {output}") |
|
|
|
pass |
|
|
|
try: |
|
self.initialize_agents(topic) |
|
self.current_agent = "Content Planner" |
|
|
|
|
|
yield [{ |
|
"role": "assistant", |
|
"content": "Starting work on your article...", |
|
"metadata": {"title": "π Process Started"} |
|
}] |
|
|
|
|
|
add_agent_messages("Content Planner", |
|
"""1. Prioritize the latest trends, key players, and noteworthy news |
|
2. Identify the target audience, considering their interests and pain points |
|
3. Develop a detailed content outline including introduction, key points, and call to action |
|
4. Include SEO keywords and relevant data or sources""") |
|
|
|
crew = Crew( |
|
agents=[self.planner, self.writer, self.editor], |
|
tasks=self.create_tasks(topic), |
|
verbose=True, |
|
step_callback=step_callback, |
|
task_callback=task_callback |
|
) |
|
|
|
def run_crew(): |
|
try: |
|
crew.kickoff() |
|
except Exception as e: |
|
print(f"Error in crew execution: {str(e)}") |
|
self.message_queue.add_message({ |
|
"role": "assistant", |
|
"content": f"An error occurred: {str(e)}", |
|
"metadata": {"title": "β Error"} |
|
}) |
|
|
|
thread = threading.Thread(target=run_crew) |
|
thread.start() |
|
|
|
while thread.is_alive() or not self.message_queue.message_queue.empty(): |
|
messages = self.message_queue.get_messages() |
|
if messages: |
|
print(f"Yielding messages: {messages}") |
|
yield messages |
|
await asyncio.sleep(0.1) |
|
|
|
except Exception as e: |
|
print(f"Error in process_article: {str(e)}") |
|
yield [{ |
|
"role": "assistant", |
|
"content": f"An error occurred: {str(e)}", |
|
"metadata": {"title": "β Error"} |
|
}] |
|
|
|
|
|
|
|
def create_demo(): |
|
article_crew = None |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# π AI Article Writing Crew") |
|
|
|
openai_api_key = gr.Textbox( |
|
label='OpenAI API Key', |
|
type='password', |
|
placeholder='Enter your OpenAI API key...', |
|
interactive=True |
|
) |
|
|
|
chatbot = gr.Chatbot( |
|
label="Writing Process", |
|
height=700, |
|
type="messages", |
|
show_label=True, |
|
visible=False, |
|
bubble_full_width=False, |
|
render_markdown=True |
|
) |
|
|
|
with gr.Row(equal_height=True): |
|
topic = gr.Textbox( |
|
label="Article Topic", |
|
placeholder="Enter topic...", |
|
scale=4, |
|
visible=False |
|
) |
|
btn = gr.Button("Write Article", variant="primary", scale=1, visible=False) |
|
|
|
async def process_input(topic, history, api_key): |
|
nonlocal article_crew |
|
if not api_key: |
|
history = history or [] |
|
history.append({ |
|
"role": "assistant", |
|
"content": "Please provide an OpenAI API key.", |
|
"metadata": {"title": "β Error"} |
|
}) |
|
yield history |
|
return |
|
|
|
if article_crew is None: |
|
article_crew = ArticleCrew(api_key=api_key) |
|
|
|
history = history or [] |
|
history.append({"role": "user", "content": f"Write an article about: {topic}"}) |
|
yield history |
|
|
|
try: |
|
async for messages in article_crew.process_article(topic): |
|
history.extend(messages) |
|
yield history |
|
except Exception as e: |
|
history.append({ |
|
"role": "assistant", |
|
"content": f"An error occurred: {str(e)}", |
|
"metadata": {"title": "β Error"} |
|
}) |
|
yield history |
|
|
|
def show_interface(): |
|
return { |
|
openai_api_key: gr.Textbox(visible=False), |
|
chatbot: gr.Chatbot(visible=True), |
|
topic: gr.Textbox(visible=True), |
|
btn: gr.Button(visible=True) |
|
} |
|
|
|
openai_api_key.submit(show_interface, None, [openai_api_key, chatbot, topic, btn]) |
|
btn.click(process_input, [topic, chatbot, openai_api_key], [chatbot]) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
demo = create_demo() |
|
demo.queue() |
|
demo.launch(debug=True) |