Spaces:
Runtime error
Runtime error
from bokeh.models import ColumnDataSource, FactorRange, HoverTool | |
from bokeh.plotting import figure | |
from bokeh.transform import dodge | |
from bokeh.io import output_notebook, show | |
from bokeh.palettes import Category20 | |
from bokeh.plotting import figure, output_notebook, show | |
from bokeh.plotting import figure, show | |
from bokeh.io import output_file, show | |
from bokeh.models import ColumnDataSource, FactorRange, Range1d, LinearAxis | |
from bokeh.transform import factor_cmap | |
output_notebook() | |
from huggingface_hub import HfApi | |
from huggingface_hub import ModelSearchArguments, DatasetSearchArguments | |
from huggingface_hub import ModelFilter | |
import pandas as pd | |
import gradio as gr | |
api = HfApi() | |
filt = ModelFilter(library = "diffusers",) | |
diffusers_models = api.list_models(filter=filt, sort='downloads', direction=-1) | |
#len(diffusers_models) | |
diffusers_dict = {} | |
downloads, authors, modelids, likes = [], [], [], [] | |
print(len(diffusers_models)) | |
for data in diffusers_models: | |
#print(data.downloads, data.author, data.modelId, data.likes) | |
downloads.append(data.downloads) | |
authors.append(data.author) | |
modelids.append(data.modelId) | |
likes.append(data.likes) | |
diffusers_dict['modelid'] = modelids | |
diffusers_dict['author'] = authors | |
diffusers_dict['download'] = downloads | |
diffusers_dict['likes'] = likes | |
diffusers_df = pd.DataFrame.from_dict(diffusers_dict) | |
diffusers_df = diffusers_df[(diffusers_df['download'] != 0) & (diffusers_df['likes'] != 0) ] | |
grouped = diffusers_df.groupby('author').sum().sort_values(by='download', ascending=False) | |
#getting data ready for bokeh plots | |
data_bokeh = grouped.sort_values('download', ascending=False).head(15) | |
data_bokeh.reset_index(inplace=True) | |
data_bokeh | |
#y - axis 1 | |
authors = data_bokeh['author'] | |
#x-axis | |
downloads = data_bokeh['download'] | |
#y - axis 2 | |
likes = data_bokeh['likes'] | |
# create sample data | |
data = {'authors': authors, | |
'downloads': downloads, | |
'likes': likes} | |
def display_df(): | |
df = data_bokeh | |
return df | |
def bokehplots(): | |
source = ColumnDataSource(data=data) | |
# set up figure | |
p = figure(x_range=FactorRange(*authors), height=350, width=600, title='Downloads and Likes by Author') | |
p.vbar(x=dodge('authors',-0.2, range=p.x_range), top='downloads', width=0.4, source=source, | |
color=Category20[3][0], legend_label='Downloads') | |
p.vbar(x=dodge('authors',0.2, range=p.x_range), top='likes', width=0.4, source=source, | |
color=Category20[3][1], legend_label='Likes') | |
p.xaxis.major_label_orientation = 45 | |
# set up y-axis for downloads | |
p.yaxis.axis_label = 'Downloads' | |
p.yaxis.axis_label_text_color = Category20[3][0] | |
p.yaxis.major_label_text_color = Category20[3][0] | |
# set up y-axis for likes | |
p.extra_y_ranges = {'likes': Range1d(start=0, end=max(likes)+500)} | |
p.add_layout(LinearAxis(y_range_name='likes', axis_label='Likes', | |
axis_label_text_color=Category20[3][1], major_label_text_color=Category20[3][1]), 'right') | |
p.vbar(x=dodge('authors', 0.4, range=p.x_range), top='likes', width=0.5, source=source, | |
color=Category20[3][1], legend_label='Likes', y_range_name='likes') | |
# Create a HoverTool object and specify the information to display in the tooltip | |
#hover = HoverTool(tooltips=[('authors', '@authors'), ('downloads', '@downloads'), ('likes', '@likes')]) | |
# Add the HoverTool to the plot | |
#p.add_tools(hover) | |
# remove grid lines | |
p.xgrid.grid_line_color = None | |
p.ygrid.grid_line_color = None | |
# set legend location | |
p.legend.location = 'top_right' | |
return p | |
with gr.Blocks(css = '#myplot {height: 600px;}') as demo: | |
with gr.Row(): | |
plot = gr.Plot(elem_id='myplot') | |
out_dataframe = gr.Dataframe(wrap=True, max_rows=10, overflow_row_behaviour= "paginate", datatype = ["str", "number", "number"], interactive=False) | |
demo.load(bokehplots, outputs=[plot]) | |
demo.load(fn=display_df, outputs=[out_dataframe]) | |
demo.launch(debug=True) |