ysharma HF staff commited on
Commit
2682f2f
·
1 Parent(s): a736a70
Files changed (1) hide show
  1. app.py +118 -1
app.py CHANGED
@@ -1,6 +1,123 @@
 
 
 
 
 
 
1
  from datasets import load_dataset
2
 
3
  dataset = load_dataset("ysharma/short_jokes")
4
 
 
 
5
 
6
- print(dataset['train'][0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import whisper
4
+ import requests
5
+ import tempfile
6
+ from neon_tts_plugin_coqui import CoquiTTS
7
  from datasets import load_dataset
8
 
9
  dataset = load_dataset("ysharma/short_jokes")
10
 
11
+ # Language common in both the multilingual models - English, Chinese, Spanish, and French etc
12
+ # So it would make sense to test the App on these four prominently
13
 
14
+ # Whisper: Speech-to-text
15
+ model = whisper.load_model("base")
16
+ model_med = whisper.load_model("medium")
17
+ # Languages covered in Whisper - (exhaustive list) :
18
+ #"en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian",
19
+ #"ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish",
20
+ #"pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish",
21
+ #"it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese",
22
+ #"iw": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech",
23
+ #"ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian",
24
+ #"th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian",
25
+ #"la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak",
26
+ #"te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian",
27
+ #"az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian",
28
+ #"mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian",
29
+ #"ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian",
30
+ #"sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala",
31
+ #"km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans",
32
+ #"oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi",
33
+ #"gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek",
34
+ #"fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk",
35
+ #"mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan",
36
+ #"tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian",
37
+ #"ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese",
38
+
39
+
40
+ # Text-to-Speech
41
+ LANGUAGES = list(CoquiTTS.langs.keys())
42
+ coquiTTS = CoquiTTS()
43
+ print(f"Languages for Coqui are: {LANGUAGES}")
44
+ #Languages for Coqui are: ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'el', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga']
45
+ # en - English, es - Spanish, fr - French, de - German, pl - Polish
46
+ # uk - Ukrainian, ro - Romanian, hu - Hungarian, el - Greek, bg - Bulgarian,
47
+ # nl - dutch, fi - finnish, sl - slovenian, lv - latvian, ga - ??
48
+
49
+
50
+ # Driver function
51
+ def driver_fun(audio) :
52
+ transcribe, translation, lang = whisper_stt(audio)
53
+ #text1 = model.transcribe(audio)["text"]
54
+
55
+ #For now only taking in English text for Bloom prompting as inference model is not high spec
56
+ #text_generated = lang_model_response(transcribe, lang)
57
+ #text_generated_en = lang_model_response(translation, 'en')
58
+
59
+ if lang in ['es', 'fr']:
60
+ speech = tts(transcribe, lang)
61
+ else:
62
+ speech = tts(translation, 'en') #'en')
63
+ return transcribe, translation, speech
64
+
65
+
66
+ # Whisper - speech-to-text
67
+ def whisper_stt(audio):
68
+ print("Inside Whisper TTS")
69
+ # load audio and pad/trim it to fit 30 seconds
70
+ audio = whisper.load_audio(audio)
71
+ audio = whisper.pad_or_trim(audio)
72
+
73
+ # make log-Mel spectrogram and move to the same device as the model
74
+ mel = whisper.log_mel_spectrogram(audio).to(model.device)
75
+
76
+ # detect the spoken language
77
+ _, probs = model.detect_language(mel)
78
+ lang = max(probs, key=probs.get)
79
+ print(f"Detected language: {max(probs, key=probs.get)}")
80
+
81
+ # decode the audio
82
+ options_transc = whisper.DecodingOptions(fp16 = False, language=lang, task='transcribe') #lang
83
+ options_transl = whisper.DecodingOptions(fp16 = False, language='en', task='translate') #lang
84
+ result_transc = whisper.decode(model_med, mel, options_transc)
85
+ result_transl = whisper.decode(model_med, mel, options_transl)
86
+
87
+ # print the recognized text
88
+ print(f"transcript is : {result_transc.text}")
89
+ print(f"translation is : {result_transl.text}")
90
+
91
+ return result_transc.text, result_transl.text, lang
92
+
93
+
94
+ # Coqui - Text-to-Speech
95
+ def tts(text, language):
96
+ print(f"Inside tts - language is : {language}")
97
+ coqui_langs = ['en' ,'es' ,'fr' ,'de' ,'pl' ,'uk' ,'ro' ,'hu' ,'bg' ,'nl' ,'fi' ,'sl' ,'lv' ,'ga']
98
+ if language not in coqui_langs:
99
+ language = 'en'
100
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
101
+ coquiTTS.get_tts(text, fp, speaker = {"language" : language})
102
+ return fp.name
103
+
104
+ demo = gr.Blocks()
105
+ with demo:
106
+ gr.Markdown("<h1><center>Multilingual AI Assistant - Voice to Joke</center></h1>")
107
+ gr.Markdown(
108
+ """Model pipeline consisting of - <br>- [**Whisper**](https://github.com/openai/whisper) for Speech-to-text, <br>- [**CoquiTTS**](https://huggingface.co/coqui) for Text-To-Speech. <br>- Front end is built using [**Gradio Block API**](https://gradio.app/docs/#blocks).<br>Both CoquiTTS and Whisper are Multilingual, there are several overlapping languages between them. Hence it would be suggested to test this ML-App using these two languages to get the best results</u>.<br>If you want to reuse the App, simply click on the small cross button in the top right corner of your voice record panel, and then press record again!
109
+ """)
110
+ with gr.Row():
111
+ with gr.Column():
112
+ in_audio = gr.Audio(source="microphone", type="filepath", label='Record your voice command here in English, Spanish or French for best results-') #type='filepath'
113
+ b1 = gr.Button("AI response pipeline (Whisper - Bloom - Coqui pipeline)")
114
+ out_transcript = gr.Textbox(label= 'English/Spanish/French Transcript of your Audio using OpenAI Whisper')
115
+ out_translation_en = gr.Textbox(label= 'English Translation of audio using OpenAI Whisper')
116
+ with gr.Column():
117
+ out_audio = gr.Audio(label='AI response in Audio form in your language - This will be either in Spanish, or in French or in English for all other languages -')
118
+ out_generated_text = gr.Textbox(label= 'AI response to your query in your preferred language using Bloom! ')
119
+ out_generated_text_en = gr.Textbox(label= 'AI response to your query in English using Bloom! ')
120
+
121
+ b1.click(driver_fun,inputs=[in_audio], outputs=[out_transcript, out_translation_en, out_generated_text,out_generated_text_en, out_audio])
122
+
123
+ demo.launch(enable_queue=True, debug=True)