Voice-to-jokes / app.py
ysharma's picture
ysharma HF staff
update
71843eb
raw
history blame
6.52 kB
import os
os.system("pip install git+https://github.com/openai/whisper.git")
os.system("pip install neon-tts-plugin-coqui==0.6.0")
import gradio as gr
import whisper
import requests
import tempfile
from neon_tts_plugin_coqui import CoquiTTS
from datasets import load_dataset
#import whisper
dataset = load_dataset("ysharma/short_jokes")
# Language common in both the multilingual models - English, Chinese, Spanish, and French etc
# /model 1: Whisper: Speech-to-text
model = whisper.load_model("base")
#model_med = whisper.load_model("medium")
# Languages covered in Whisper - (exhaustive list) :
#"en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian",
#"ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish",
#"pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish",
#"it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese",
#"iw": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech",
#"ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian",
#"th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian",
#"la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak",
#"te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian",
#"az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian",
#"mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian",
#"ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian",
#"sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala",
#"km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans",
#"oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi",
#"gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek",
#"fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk",
#"mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan",
#"tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian",
#"ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese",
#Model 2: Text-to-Speech
LANGUAGES = list(CoquiTTS.langs.keys())
coquiTTS = CoquiTTS()
print(f"Languages for Coqui are: {LANGUAGES}")
#Languages for Coqui are: ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'el', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga']
# en - English, es - Spanish, fr - French, de - German, pl - Polish
# uk - Ukrainian, ro - Romanian, hu - Hungarian, el - Greek, bg - Bulgarian,
# nl - dutch, fi - finnish, sl - slovenian, lv - latvian, ga - ??
# Driver function
def driver_fun(audio) :
translation, lang = whisper_stt(audio) # older : transcribe, translation, lang
#text1 = model.transcribe(audio)["text"]
#if translation
#For now only taking in English text for Bloom prompting as inference model is not high spec
#text_generated = lang_model_response(transcribe, lang)
#text_generated_en = lang_model_response(translation, 'en')
#if lang in ['es', 'fr']:
# speech = tts(transcribe, lang)
#else:
speech = tts(translation, 'en') #'en')
return translation, speech #transcribe,
# Whisper - speech-to-text
def whisper_stt(audio):
print("Inside Whisper TTS")
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
lang = max(probs, key=probs.get)
print(f"Detected language: {max(probs, key=probs.get)}")
# decode the audio
#options_transc = whisper.DecodingOptions(fp16 = False, language=lang, task='transcribe') #lang
options_transl = whisper.DecodingOptions(fp16 = False, language='en', task='translate') #lang
#result_transc = whisper.decode(model_med, mel, options_transc)
result_transl = whisper.decode(model, mel, options_transl) #model_med
# print the recognized text
#print(f"transcript is : {result_transc.text}")
print(f"translation is : {result_transl.text}")
return result_transl.text, lang #result_transc.text,
# Coqui - Text-to-Speech
def tts(text, language):
print(f"Inside tts - language is : {language}")
coqui_langs = ['en' ,'es' ,'fr' ,'de' ,'pl' ,'uk' ,'ro' ,'hu' ,'bg' ,'nl' ,'fi' ,'sl' ,'lv' ,'ga']
if language not in coqui_langs:
language = 'en'
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
coquiTTS.get_tts(text, fp, speaker = {"language" : language})
return fp.name
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>AI Assistant - Voice to Joke</center></h1>")
gr.Markdown(
"""Model pipeline consisting of - <br>- [**Whisper**](https://github.com/openai/whisper) for Speech-to-text, <br>- [**CoquiTTS**](https://huggingface.co/coqui) for Text-To-Speech. <br>- Front end is built using [**Gradio Block API**](https://gradio.app/docs/#blocks).<br><br>Both CoquiTTS and Whisper are Multilingual, there are several overlapping languages between them. Hence it would be suggested to test this ML-App using these two languages to get the best results</u>.<br>If you want to reuse the App, simply click on the small cross button in the top right corner of your voice record panel, and then press record again!
""")
with gr.Row():
with gr.Column():
in_audio = gr.Audio(source="microphone", type="filepath", label='Record your voice command here in English -') #type='filepath'
b1 = gr.Button("AI Response")
out_transcript = gr.Textbox(label= 'Transcript of your Audio using OpenAI Whisper')
#out_translation_en = gr.Textbox(label= 'English Translation of audio using OpenAI Whisper')
with gr.Column():
out_audio = gr.Audio(label='Audio response form CoquiTTS')
#out_generated_text = gr.Textbox(label= 'AI response to your query in your preferred language using Bloom! ')
#out_generated_text_en = gr.Textbox(label= 'AI response to your query in English using Bloom! ')
b1.click(driver_fun,inputs=[in_audio], outputs=[out_transcript, out_audio]) #out_translation_en, out_generated_text,out_generated_text_en,
demo.launch(enable_queue=True, debug=True)