Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
import time | |
import numpy as np | |
from torch.nn import functional as F | |
import os | |
from threading import Thread | |
# init | |
tok = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1") | |
m = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.float16) | |
m = m.to('cuda:0') | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
#stop_ids = [[29, 13961, 31], [29, 12042, 31], 1, 0] | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
#print(f"^^input ids - {input_ids}") | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def user(message, history): | |
# Append the user's message to the conversation history | |
return "", history + [[message, ""]] | |
def chat(history, top_p, top_k, temperature): | |
print(f"history is - {history}") | |
# Initialize a StopOnTokens object | |
stop = StopOnTokens() | |
# Construct the input message string for the model by concatenating the current system message and conversation history | |
messages = "".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) #curr_system_message + | |
for item in history]) | |
print(f"messages is - {messages}") | |
# Tokenize the messages string | |
model_inputs = tok([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer( | |
tok, timeout=10., skip_prompt=False, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=True, | |
top_p=top_p, #0.95, | |
top_k=top_k, #1000, | |
temperature=temperature, #1.0, | |
num_beams=1, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=m.generate, kwargs=generate_kwargs) | |
t.start() | |
# Initialize an empty string to store the generated text | |
partial_text = "" | |
for new_text in streamer: | |
#print(new_text) | |
if new_text != '<': | |
partial_text += new_text | |
history[-1][1] = partial_text.split('<bot>:')[-1] | |
# Yield an empty string to clean up the message textbox and the updated conversation history | |
yield history | |
return partial_text | |
title = """<h1 align="center">🔥RedPajama-INCITE-Chat-3B-v1</h1><br><h2 align="center">🏃♂️💨Streaming with Transformers & Gradio💪</h2>""" | |
description = """<br><br><h3 align="center">This is a RedPajama Chat model fine-tuned using data from Dolly 2.0 and Open Assistant over the RedPajama-INCITE-Base-3B-v1 base model.</h3>""" | |
theme = gr.themes.Soft( | |
primary_hue=gr.themes.Color("#ededed", "#fee2e2", "#fecaca", "#fca5a5", "#f87171", "#ef4444", "#dc2626", "#b91c1c", "#991b1b", "#7f1d1d", "#6c1e1e"), | |
neutral_hue="red", | |
) | |
with gr.Blocks(theme=theme) as demo: | |
gr.HTML(title) | |
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/RedPajama-Chat-3B?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''') | |
chatbot = gr.Chatbot().style(height=500) | |
with gr.Row(): | |
with gr.Column(): | |
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box", | |
show_label=False).style(container=False) | |
with gr.Column(): | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
stop = gr.Button("Stop") | |
clear = gr.Button("Clear") | |
#Advanced options - top_p, temperature, top_k | |
with gr.Accordion("Advanced Options:", open=False): | |
top_p = gr.Slider( minimum=-0, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p",) | |
top_k = gr.Slider(minimum=0.0, maximum=1000, value=1000, step=1, interactive=True, label="Top-k", ) | |
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) | |
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( | |
fn=chat, inputs=[chatbot, top_p, top_k, temperature], outputs=[chatbot], queue=True) #inputs=[system_msg, chatbot] | |
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then( | |
fn=chat, inputs=[chatbot, top_p, top_k, temperature], outputs=[chatbot], queue=True) #inputs=[system_msg, chatbot] | |
stop.click(fn=None, inputs=None, outputs=None, cancels=[ | |
submit_event, submit_click_event], queue=False) | |
clear.click(lambda: None, None, [chatbot], queue=False) | |
gr.Examples([ | |
["Hello there! How are you doing?"], | |
["Can you explain to me briefly what is Python programming language?"], | |
["Explain the plot of Cinderella in a sentence."], | |
["What are some common mistakes to avoid when writing code?"], | |
["Write a 500-word blog post on “Benefits of Artificial Intelligence"] | |
], inputs=msg, label= "Click on any example and press the 'Submit' button" | |
) | |
gr.HTML(description) | |
demo.queue(max_size=32, concurrency_count=2) | |
demo.launch(debug=True) |