|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import time |
|
import math |
|
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence |
|
import torch.nn.functional as F |
|
|
|
|
|
class ContrastiveLoss(torch.nn.Module): |
|
""" |
|
Contrastive loss function. |
|
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf |
|
""" |
|
def __init__(self, margin=3.0): |
|
super(ContrastiveLoss, self).__init__() |
|
self.margin = margin |
|
|
|
def forward(self, output1, output2, label): |
|
euclidean_distance = F.pairwise_distance(output1, output2, keepdim=True) |
|
loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) + |
|
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)) |
|
return loss_contrastive |
|
|
|
|
|
def init_weight(m): |
|
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d): |
|
nn.init.xavier_normal_(m.weight) |
|
|
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def reparameterize(mu, logvar): |
|
s_var = logvar.mul(0.5).exp_() |
|
eps = s_var.data.new(s_var.size()).normal_() |
|
return eps.mul(s_var).add_(mu) |
|
|
|
|
|
|
|
|
|
def positional_encoding(batch_size, dim, pos): |
|
assert batch_size == pos.shape[0] |
|
positions_enc = np.array([ |
|
[pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)] |
|
for j in range(batch_size) |
|
], dtype=np.float32) |
|
positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2]) |
|
positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2]) |
|
return torch.from_numpy(positions_enc).float() |
|
|
|
|
|
def get_padding_mask(batch_size, seq_len, cap_lens): |
|
cap_lens = cap_lens.data.tolist() |
|
mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32) |
|
for i, cap_len in enumerate(cap_lens): |
|
mask_2d[i, :, :cap_len] = 0 |
|
return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone() |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
|
|
def __init__(self, d_model, max_len=300): |
|
super(PositionalEncoding, self).__init__() |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
|
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, pos): |
|
return self.pe[pos] |
|
|
|
|
|
class MovementConvEncoder(nn.Module): |
|
def __init__(self, input_size, hidden_size, output_size): |
|
super(MovementConvEncoder, self).__init__() |
|
self.main = nn.Sequential( |
|
nn.Conv1d(input_size, hidden_size, 4, 2, 1), |
|
nn.Dropout(0.2, inplace=True), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Conv1d(hidden_size, output_size, 4, 2, 1), |
|
nn.Dropout(0.2, inplace=True), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
) |
|
self.out_net = nn.Linear(output_size, output_size) |
|
self.main.apply(init_weight) |
|
self.out_net.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
|
|
return self.out_net(outputs) |
|
|
|
|
|
class MovementConvDecoder(nn.Module): |
|
def __init__(self, input_size, hidden_size, output_size): |
|
super(MovementConvDecoder, self).__init__() |
|
self.main = nn.Sequential( |
|
nn.ConvTranspose1d(input_size, hidden_size, 4, 2, 1), |
|
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.ConvTranspose1d(hidden_size, output_size, 4, 2, 1), |
|
|
|
nn.LeakyReLU(0.2, inplace=True), |
|
) |
|
self.out_net = nn.Linear(output_size, output_size) |
|
|
|
self.main.apply(init_weight) |
|
self.out_net.apply(init_weight) |
|
|
|
def forward(self, inputs): |
|
inputs = inputs.permute(0, 2, 1) |
|
outputs = self.main(inputs).permute(0, 2, 1) |
|
return self.out_net(outputs) |
|
|
|
|
|
class TextVAEDecoder(nn.Module): |
|
def __init__(self, text_size, input_size, output_size, hidden_size, n_layers): |
|
super(TextVAEDecoder, self).__init__() |
|
self.input_size = input_size |
|
self.output_size = output_size |
|
self.hidden_size = hidden_size |
|
self.n_layers = n_layers |
|
self.emb = nn.Sequential( |
|
nn.Linear(input_size, hidden_size), |
|
nn.LayerNorm(hidden_size), |
|
nn.LeakyReLU(0.2, inplace=True)) |
|
|
|
self.z2init = nn.Linear(text_size, hidden_size * n_layers) |
|
self.gru = nn.ModuleList([nn.GRUCell(hidden_size, hidden_size) for i in range(self.n_layers)]) |
|
self.positional_encoder = PositionalEncoding(hidden_size) |
|
|
|
|
|
self.output = nn.Sequential( |
|
nn.Linear(hidden_size, hidden_size), |
|
nn.LayerNorm(hidden_size), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Linear(hidden_size, output_size) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.output.apply(init_weight) |
|
self.emb.apply(init_weight) |
|
self.z2init.apply(init_weight) |
|
|
|
|
|
def get_init_hidden(self, latent): |
|
hidden = self.z2init(latent) |
|
hidden = torch.split(hidden, self.hidden_size, dim=-1) |
|
return list(hidden) |
|
|
|
def forward(self, inputs, last_pred, hidden, p): |
|
h_in = self.emb(inputs) |
|
pos_enc = self.positional_encoder(p).to(inputs.device).detach() |
|
h_in = h_in + pos_enc |
|
for i in range(self.n_layers): |
|
|
|
hidden[i] = self.gru[i](h_in, hidden[i]) |
|
h_in = hidden[i] |
|
pose_pred = self.output(h_in) |
|
|
|
|
|
|
|
return pose_pred, hidden |
|
|
|
|
|
class TextDecoder(nn.Module): |
|
def __init__(self, text_size, input_size, output_size, hidden_size, n_layers): |
|
super(TextDecoder, self).__init__() |
|
self.input_size = input_size |
|
self.output_size = output_size |
|
self.hidden_size = hidden_size |
|
self.n_layers = n_layers |
|
self.emb = nn.Sequential( |
|
nn.Linear(input_size, hidden_size), |
|
nn.LayerNorm(hidden_size), |
|
nn.LeakyReLU(0.2, inplace=True)) |
|
|
|
self.gru = nn.ModuleList([nn.GRUCell(hidden_size, hidden_size) for i in range(self.n_layers)]) |
|
self.z2init = nn.Linear(text_size, hidden_size * n_layers) |
|
self.positional_encoder = PositionalEncoding(hidden_size) |
|
|
|
self.mu_net = nn.Linear(hidden_size, output_size) |
|
self.logvar_net = nn.Linear(hidden_size, output_size) |
|
|
|
self.emb.apply(init_weight) |
|
self.z2init.apply(init_weight) |
|
self.mu_net.apply(init_weight) |
|
self.logvar_net.apply(init_weight) |
|
|
|
def get_init_hidden(self, latent): |
|
|
|
hidden = self.z2init(latent) |
|
hidden = torch.split(hidden, self.hidden_size, dim=-1) |
|
|
|
return list(hidden) |
|
|
|
def forward(self, inputs, hidden, p): |
|
|
|
x_in = self.emb(inputs) |
|
pos_enc = self.positional_encoder(p).to(inputs.device).detach() |
|
x_in = x_in + pos_enc |
|
|
|
for i in range(self.n_layers): |
|
hidden[i] = self.gru[i](x_in, hidden[i]) |
|
h_in = hidden[i] |
|
mu = self.mu_net(h_in) |
|
logvar = self.logvar_net(h_in) |
|
z = reparameterize(mu, logvar) |
|
return z, mu, logvar, hidden |
|
|
|
class AttLayer(nn.Module): |
|
def __init__(self, query_dim, key_dim, value_dim): |
|
super(AttLayer, self).__init__() |
|
self.W_q = nn.Linear(query_dim, value_dim) |
|
self.W_k = nn.Linear(key_dim, value_dim, bias=False) |
|
self.W_v = nn.Linear(key_dim, value_dim) |
|
|
|
self.softmax = nn.Softmax(dim=1) |
|
self.dim = value_dim |
|
|
|
self.W_q.apply(init_weight) |
|
self.W_k.apply(init_weight) |
|
self.W_v.apply(init_weight) |
|
|
|
def forward(self, query, key_mat): |
|
''' |
|
query (batch, query_dim) |
|
key (batch, seq_len, key_dim) |
|
''' |
|
|
|
query_vec = self.W_q(query).unsqueeze(-1) |
|
val_set = self.W_v(key_mat) |
|
key_set = self.W_k(key_mat) |
|
|
|
weights = torch.matmul(key_set, query_vec) / np.sqrt(self.dim) |
|
|
|
co_weights = self.softmax(weights) |
|
values = val_set * co_weights |
|
pred = values.sum(dim=1) |
|
return pred, co_weights |
|
|
|
def short_cut(self, querys, keys): |
|
return self.W_q(querys), self.W_k(keys) |
|
|
|
|
|
class TextEncoderBiGRU(nn.Module): |
|
def __init__(self, word_size, pos_size, hidden_size, device): |
|
super(TextEncoderBiGRU, self).__init__() |
|
self.device = device |
|
|
|
self.pos_emb = nn.Linear(pos_size, word_size) |
|
self.input_emb = nn.Linear(word_size, hidden_size) |
|
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
|
|
|
|
self.input_emb.apply(init_weight) |
|
self.pos_emb.apply(init_weight) |
|
|
|
|
|
self.hidden_size = hidden_size |
|
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) |
|
|
|
|
|
def forward(self, word_embs, pos_onehot, cap_lens): |
|
num_samples = word_embs.shape[0] |
|
|
|
pos_embs = self.pos_emb(pos_onehot) |
|
inputs = word_embs + pos_embs |
|
input_embs = self.input_emb(inputs) |
|
hidden = self.hidden.repeat(1, num_samples, 1) |
|
|
|
cap_lens = cap_lens.data.tolist() |
|
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) |
|
|
|
gru_seq, gru_last = self.gru(emb, hidden) |
|
|
|
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) |
|
gru_seq = pad_packed_sequence(gru_seq, batch_first=True)[0] |
|
forward_seq = gru_seq[..., :self.hidden_size] |
|
backward_seq = gru_seq[..., self.hidden_size:].clone() |
|
|
|
|
|
for i, length in enumerate(cap_lens): |
|
backward_seq[i:i+1, :length] = torch.flip(backward_seq[i:i+1, :length].clone(), dims=[1]) |
|
gru_seq = torch.cat([forward_seq, backward_seq], dim=-1) |
|
|
|
return gru_seq, gru_last |
|
|
|
|
|
class TextEncoderBiGRUCo(nn.Module): |
|
def __init__(self, word_size, pos_size, hidden_size, output_size, device): |
|
super(TextEncoderBiGRUCo, self).__init__() |
|
self.device = device |
|
|
|
self.pos_emb = nn.Linear(pos_size, word_size) |
|
self.input_emb = nn.Linear(word_size, hidden_size) |
|
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
self.output_net = nn.Sequential( |
|
nn.Linear(hidden_size * 2, hidden_size), |
|
nn.LayerNorm(hidden_size), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Linear(hidden_size, output_size) |
|
) |
|
|
|
self.input_emb.apply(init_weight) |
|
self.pos_emb.apply(init_weight) |
|
self.output_net.apply(init_weight) |
|
|
|
|
|
self.hidden_size = hidden_size |
|
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) |
|
|
|
|
|
def forward(self, word_embs, pos_onehot, cap_lens): |
|
num_samples = word_embs.shape[0] |
|
|
|
pos_embs = self.pos_emb(pos_onehot) |
|
inputs = word_embs + pos_embs |
|
input_embs = self.input_emb(inputs) |
|
hidden = self.hidden.repeat(1, num_samples, 1) |
|
|
|
cap_lens = cap_lens.data.tolist() |
|
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) |
|
|
|
gru_seq, gru_last = self.gru(emb, hidden) |
|
|
|
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) |
|
|
|
return self.output_net(gru_last) |
|
|
|
|
|
class MotionEncoderBiGRUCo(nn.Module): |
|
def __init__(self, input_size, hidden_size, output_size, device): |
|
super(MotionEncoderBiGRUCo, self).__init__() |
|
self.device = device |
|
|
|
self.input_emb = nn.Linear(input_size, hidden_size) |
|
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
self.output_net = nn.Sequential( |
|
nn.Linear(hidden_size*2, hidden_size), |
|
nn.LayerNorm(hidden_size), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
nn.Linear(hidden_size, output_size) |
|
) |
|
|
|
self.input_emb.apply(init_weight) |
|
self.output_net.apply(init_weight) |
|
self.hidden_size = hidden_size |
|
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) |
|
|
|
|
|
def forward(self, inputs, m_lens): |
|
num_samples = inputs.shape[0] |
|
|
|
input_embs = self.input_emb(inputs) |
|
hidden = self.hidden.repeat(1, num_samples, 1) |
|
|
|
cap_lens = m_lens.data.tolist() |
|
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) |
|
|
|
gru_seq, gru_last = self.gru(emb, hidden) |
|
|
|
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) |
|
|
|
return self.output_net(gru_last) |
|
|
|
|
|
class MotionLenEstimatorBiGRU(nn.Module): |
|
def __init__(self, word_size, pos_size, hidden_size, output_size): |
|
super(MotionLenEstimatorBiGRU, self).__init__() |
|
|
|
self.pos_emb = nn.Linear(pos_size, word_size) |
|
self.input_emb = nn.Linear(word_size, hidden_size) |
|
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True) |
|
nd = 512 |
|
self.output = nn.Sequential( |
|
nn.Linear(hidden_size*2, nd), |
|
nn.LayerNorm(nd), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.Linear(nd, nd // 2), |
|
nn.LayerNorm(nd // 2), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.Linear(nd // 2, nd // 4), |
|
nn.LayerNorm(nd // 4), |
|
nn.LeakyReLU(0.2, inplace=True), |
|
|
|
nn.Linear(nd // 4, output_size) |
|
) |
|
|
|
self.input_emb.apply(init_weight) |
|
self.pos_emb.apply(init_weight) |
|
self.output.apply(init_weight) |
|
self.hidden_size = hidden_size |
|
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True)) |
|
|
|
|
|
def forward(self, word_embs, pos_onehot, cap_lens): |
|
num_samples = word_embs.shape[0] |
|
|
|
pos_embs = self.pos_emb(pos_onehot) |
|
inputs = word_embs + pos_embs |
|
input_embs = self.input_emb(inputs) |
|
hidden = self.hidden.repeat(1, num_samples, 1) |
|
|
|
cap_lens = cap_lens.data.tolist() |
|
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True) |
|
|
|
gru_seq, gru_last = self.gru(emb, hidden) |
|
|
|
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1) |
|
|
|
return self.output(gru_last) |
|
|