Spaces:
Configuration error
Configuration error
upload updated files
Browse files- lora_diffusion/cli_lora_add.py +85 -16
- lora_diffusion/lora.py +198 -9
- lora_diffusion/to_ckpt_v2.py +232 -0
lora_diffusion/cli_lora_add.py
CHANGED
@@ -1,35 +1,73 @@
|
|
1 |
from typing import Literal, Union, Dict
|
2 |
-
|
|
|
3 |
import fire
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
|
6 |
import torch
|
7 |
from .lora import tune_lora_scale, weight_apply_lora
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def add(
|
11 |
path_1: str,
|
12 |
path_2: str,
|
13 |
-
output_path: str
|
14 |
alpha: float = 0.5,
|
15 |
-
mode: Literal[
|
|
|
|
|
|
|
|
|
|
|
16 |
):
|
|
|
17 |
if mode == "lpl":
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
elif mode == "upl":
|
35 |
|
@@ -38,12 +76,43 @@ def add(
|
|
38 |
).to("cpu")
|
39 |
|
40 |
weight_apply_lora(loaded_pipeline.unet, torch.load(path_2), alpha=alpha)
|
|
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
loaded_pipeline.save_pretrained(output_path)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def main():
|
49 |
fire.Fire(add)
|
|
|
1 |
from typing import Literal, Union, Dict
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
import fire
|
5 |
from diffusers import StableDiffusionPipeline
|
6 |
|
7 |
import torch
|
8 |
from .lora import tune_lora_scale, weight_apply_lora
|
9 |
+
from .to_ckpt_v2 import convert_to_ckpt
|
10 |
+
|
11 |
+
|
12 |
+
def _text_lora_path(path: str) -> str:
|
13 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
14 |
+
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"])
|
15 |
|
16 |
|
17 |
def add(
|
18 |
path_1: str,
|
19 |
path_2: str,
|
20 |
+
output_path: str,
|
21 |
alpha: float = 0.5,
|
22 |
+
mode: Literal[
|
23 |
+
"lpl",
|
24 |
+
"upl",
|
25 |
+
"upl-ckpt-v2",
|
26 |
+
] = "lpl",
|
27 |
+
with_text_lora: bool = False,
|
28 |
):
|
29 |
+
print("Lora Add, mode " + mode)
|
30 |
if mode == "lpl":
|
31 |
+
for _path_1, _path_2, opt in [(path_1, path_2, "unet")] + (
|
32 |
+
[(_text_lora_path(path_1), _text_lora_path(path_2), "text_encoder")]
|
33 |
+
if with_text_lora
|
34 |
+
else []
|
35 |
+
):
|
36 |
+
print("Loading", _path_1, _path_2)
|
37 |
+
out_list = []
|
38 |
+
if opt == "text_encoder":
|
39 |
+
if not os.path.exists(_path_1):
|
40 |
+
print(f"No text encoder found in {_path_1}, skipping...")
|
41 |
+
continue
|
42 |
+
if not os.path.exists(_path_2):
|
43 |
+
print(f"No text encoder found in {_path_1}, skipping...")
|
44 |
+
continue
|
45 |
+
|
46 |
+
l1 = torch.load(_path_1)
|
47 |
+
l2 = torch.load(_path_2)
|
48 |
|
49 |
+
l1pairs = zip(l1[::2], l1[1::2])
|
50 |
+
l2pairs = zip(l2[::2], l2[1::2])
|
51 |
|
52 |
+
for (x1, y1), (x2, y2) in zip(l1pairs, l2pairs):
|
53 |
+
# print("Merging", x1.shape, y1.shape, x2.shape, y2.shape)
|
54 |
+
x1.data = alpha * x1.data + (1 - alpha) * x2.data
|
55 |
+
y1.data = alpha * y1.data + (1 - alpha) * y2.data
|
56 |
|
57 |
+
out_list.append(x1)
|
58 |
+
out_list.append(y1)
|
59 |
|
60 |
+
if opt == "unet":
|
61 |
+
|
62 |
+
print("Saving merged UNET to", output_path)
|
63 |
+
torch.save(out_list, output_path)
|
64 |
+
|
65 |
+
elif opt == "text_encoder":
|
66 |
+
print("Saving merged text encoder to", _text_lora_path(output_path))
|
67 |
+
torch.save(
|
68 |
+
out_list,
|
69 |
+
_text_lora_path(output_path),
|
70 |
+
)
|
71 |
|
72 |
elif mode == "upl":
|
73 |
|
|
|
76 |
).to("cpu")
|
77 |
|
78 |
weight_apply_lora(loaded_pipeline.unet, torch.load(path_2), alpha=alpha)
|
79 |
+
if with_text_lora:
|
80 |
|
81 |
+
weight_apply_lora(
|
82 |
+
loaded_pipeline.text_encoder,
|
83 |
+
torch.load(_text_lora_path(path_2)),
|
84 |
+
alpha=alpha,
|
85 |
+
target_replace_module=["CLIPAttention"],
|
86 |
+
)
|
87 |
|
88 |
loaded_pipeline.save_pretrained(output_path)
|
89 |
|
90 |
+
elif mode == "upl-ckpt-v2":
|
91 |
+
|
92 |
+
loaded_pipeline = StableDiffusionPipeline.from_pretrained(
|
93 |
+
path_1,
|
94 |
+
).to("cpu")
|
95 |
+
|
96 |
+
weight_apply_lora(loaded_pipeline.unet, torch.load(path_2), alpha=alpha)
|
97 |
+
if with_text_lora:
|
98 |
+
weight_apply_lora(
|
99 |
+
loaded_pipeline.text_encoder,
|
100 |
+
torch.load(_text_lora_path(path_2)),
|
101 |
+
alpha=alpha,
|
102 |
+
target_replace_module=["CLIPAttention"],
|
103 |
+
)
|
104 |
+
|
105 |
+
_tmp_output = output_path + ".tmp"
|
106 |
+
|
107 |
+
loaded_pipeline.save_pretrained(_tmp_output)
|
108 |
+
convert_to_ckpt(_tmp_output, output_path, as_half=True)
|
109 |
+
# remove the tmp_output folder
|
110 |
+
shutil.rmtree(_tmp_output)
|
111 |
+
|
112 |
+
else:
|
113 |
+
print("Unknown mode", mode)
|
114 |
+
raise ValueError(f"Unknown mode {mode}")
|
115 |
+
|
116 |
|
117 |
def main():
|
118 |
fire.Fire(add)
|
lora_diffusion/lora.py
CHANGED
@@ -10,14 +10,20 @@ import torch.nn as nn
|
|
10 |
|
11 |
|
12 |
class LoraInjectedLinear(nn.Module):
|
13 |
-
def __init__(self, in_features, out_features, bias=False):
|
14 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
self.linear = nn.Linear(in_features, out_features, bias)
|
16 |
-
self.lora_down = nn.Linear(in_features,
|
17 |
-
self.lora_up = nn.Linear(
|
18 |
self.scale = 1.0
|
19 |
|
20 |
-
nn.init.normal_(self.lora_down.weight, std=1 /
|
21 |
nn.init.zeros_(self.lora_up.weight)
|
22 |
|
23 |
def forward(self, input):
|
@@ -25,7 +31,10 @@ class LoraInjectedLinear(nn.Module):
|
|
25 |
|
26 |
|
27 |
def inject_trainable_lora(
|
28 |
-
model: nn.Module,
|
|
|
|
|
|
|
29 |
):
|
30 |
"""
|
31 |
inject lora into model, and returns lora parameter groups.
|
@@ -34,6 +43,9 @@ def inject_trainable_lora(
|
|
34 |
require_grad_params = []
|
35 |
names = []
|
36 |
|
|
|
|
|
|
|
37 |
for _module in model.modules():
|
38 |
if _module.__class__.__name__ in target_replace_module:
|
39 |
|
@@ -46,6 +58,7 @@ def inject_trainable_lora(
|
|
46 |
_child_module.in_features,
|
47 |
_child_module.out_features,
|
48 |
_child_module.bias is not None,
|
|
|
49 |
)
|
50 |
_tmp.linear.weight = weight
|
51 |
if bias is not None:
|
@@ -61,10 +74,13 @@ def inject_trainable_lora(
|
|
61 |
_module._modules[name].lora_down.parameters()
|
62 |
)
|
63 |
|
|
|
|
|
|
|
|
|
64 |
_module._modules[name].lora_up.weight.requires_grad = True
|
65 |
_module._modules[name].lora_down.weight.requires_grad = True
|
66 |
names.append(name)
|
67 |
-
|
68 |
return require_grad_params, names
|
69 |
|
70 |
|
@@ -82,9 +98,13 @@ def extract_lora_ups_down(model, target_replace_module=["CrossAttention", "Atten
|
|
82 |
return loras
|
83 |
|
84 |
|
85 |
-
def save_lora_weight(
|
|
|
|
|
86 |
weights = []
|
87 |
-
for _up, _down in extract_lora_ups_down(
|
|
|
|
|
88 |
weights.append(_up.weight)
|
89 |
weights.append(_down.weight)
|
90 |
|
@@ -125,7 +145,7 @@ def weight_apply_lora(
|
|
125 |
|
126 |
|
127 |
def monkeypatch_lora(
|
128 |
-
model, loras, target_replace_module=["CrossAttention", "Attention"]
|
129 |
):
|
130 |
for _module in model.modules():
|
131 |
if _module.__class__.__name__ in target_replace_module:
|
@@ -138,6 +158,44 @@ def monkeypatch_lora(
|
|
138 |
_child_module.in_features,
|
139 |
_child_module.out_features,
|
140 |
_child_module.bias is not None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
)
|
142 |
_tmp.linear.weight = weight
|
143 |
|
@@ -160,7 +218,138 @@ def monkeypatch_lora(
|
|
160 |
_module._modules[name].to(weight.device)
|
161 |
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
def tune_lora_scale(model, alpha: float = 1.0):
|
164 |
for _module in model.modules():
|
165 |
if _module.__class__.__name__ == "LoraInjectedLinear":
|
166 |
_module.scale = alpha
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
class LoraInjectedLinear(nn.Module):
|
13 |
+
def __init__(self, in_features, out_features, bias=False, r=4):
|
14 |
super().__init__()
|
15 |
+
|
16 |
+
if r > min(in_features, out_features):
|
17 |
+
raise ValueError(
|
18 |
+
f"LoRA rank {r} must be less or equal than {min(in_features, out_features)}"
|
19 |
+
)
|
20 |
+
|
21 |
self.linear = nn.Linear(in_features, out_features, bias)
|
22 |
+
self.lora_down = nn.Linear(in_features, r, bias=False)
|
23 |
+
self.lora_up = nn.Linear(r, out_features, bias=False)
|
24 |
self.scale = 1.0
|
25 |
|
26 |
+
nn.init.normal_(self.lora_down.weight, std=1 / r**2)
|
27 |
nn.init.zeros_(self.lora_up.weight)
|
28 |
|
29 |
def forward(self, input):
|
|
|
31 |
|
32 |
|
33 |
def inject_trainable_lora(
|
34 |
+
model: nn.Module,
|
35 |
+
target_replace_module: List[str] = ["CrossAttention", "Attention"],
|
36 |
+
r: int = 4,
|
37 |
+
loras=None, # path to lora .pt
|
38 |
):
|
39 |
"""
|
40 |
inject lora into model, and returns lora parameter groups.
|
|
|
43 |
require_grad_params = []
|
44 |
names = []
|
45 |
|
46 |
+
if loras != None:
|
47 |
+
loras = torch.load(loras)
|
48 |
+
|
49 |
for _module in model.modules():
|
50 |
if _module.__class__.__name__ in target_replace_module:
|
51 |
|
|
|
58 |
_child_module.in_features,
|
59 |
_child_module.out_features,
|
60 |
_child_module.bias is not None,
|
61 |
+
r,
|
62 |
)
|
63 |
_tmp.linear.weight = weight
|
64 |
if bias is not None:
|
|
|
74 |
_module._modules[name].lora_down.parameters()
|
75 |
)
|
76 |
|
77 |
+
if loras != None:
|
78 |
+
_module._modules[name].lora_up.weight = loras.pop(0)
|
79 |
+
_module._modules[name].lora_down.weight = loras.pop(0)
|
80 |
+
|
81 |
_module._modules[name].lora_up.weight.requires_grad = True
|
82 |
_module._modules[name].lora_down.weight.requires_grad = True
|
83 |
names.append(name)
|
|
|
84 |
return require_grad_params, names
|
85 |
|
86 |
|
|
|
98 |
return loras
|
99 |
|
100 |
|
101 |
+
def save_lora_weight(
|
102 |
+
model, path="./lora.pt", target_replace_module=["CrossAttention", "Attention"]
|
103 |
+
):
|
104 |
weights = []
|
105 |
+
for _up, _down in extract_lora_ups_down(
|
106 |
+
model, target_replace_module=target_replace_module
|
107 |
+
):
|
108 |
weights.append(_up.weight)
|
109 |
weights.append(_down.weight)
|
110 |
|
|
|
145 |
|
146 |
|
147 |
def monkeypatch_lora(
|
148 |
+
model, loras, target_replace_module=["CrossAttention", "Attention"], r: int = 4
|
149 |
):
|
150 |
for _module in model.modules():
|
151 |
if _module.__class__.__name__ in target_replace_module:
|
|
|
158 |
_child_module.in_features,
|
159 |
_child_module.out_features,
|
160 |
_child_module.bias is not None,
|
161 |
+
r=r,
|
162 |
+
)
|
163 |
+
_tmp.linear.weight = weight
|
164 |
+
|
165 |
+
if bias is not None:
|
166 |
+
_tmp.linear.bias = bias
|
167 |
+
|
168 |
+
# switch the module
|
169 |
+
_module._modules[name] = _tmp
|
170 |
+
|
171 |
+
up_weight = loras.pop(0)
|
172 |
+
down_weight = loras.pop(0)
|
173 |
+
|
174 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
175 |
+
up_weight.type(weight.dtype)
|
176 |
+
)
|
177 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
178 |
+
down_weight.type(weight.dtype)
|
179 |
+
)
|
180 |
+
|
181 |
+
_module._modules[name].to(weight.device)
|
182 |
+
|
183 |
+
|
184 |
+
def monkeypatch_replace_lora(
|
185 |
+
model, loras, target_replace_module=["CrossAttention", "Attention"], r: int = 4
|
186 |
+
):
|
187 |
+
for _module in model.modules():
|
188 |
+
if _module.__class__.__name__ in target_replace_module:
|
189 |
+
for name, _child_module in _module.named_modules():
|
190 |
+
if _child_module.__class__.__name__ == "LoraInjectedLinear":
|
191 |
+
|
192 |
+
weight = _child_module.linear.weight
|
193 |
+
bias = _child_module.linear.bias
|
194 |
+
_tmp = LoraInjectedLinear(
|
195 |
+
_child_module.linear.in_features,
|
196 |
+
_child_module.linear.out_features,
|
197 |
+
_child_module.linear.bias is not None,
|
198 |
+
r=r,
|
199 |
)
|
200 |
_tmp.linear.weight = weight
|
201 |
|
|
|
218 |
_module._modules[name].to(weight.device)
|
219 |
|
220 |
|
221 |
+
def monkeypatch_add_lora(
|
222 |
+
model,
|
223 |
+
loras,
|
224 |
+
target_replace_module=["CrossAttention", "Attention"],
|
225 |
+
alpha: float = 1.0,
|
226 |
+
beta: float = 1.0,
|
227 |
+
):
|
228 |
+
for _module in model.modules():
|
229 |
+
if _module.__class__.__name__ in target_replace_module:
|
230 |
+
for name, _child_module in _module.named_modules():
|
231 |
+
if _child_module.__class__.__name__ == "LoraInjectedLinear":
|
232 |
+
|
233 |
+
weight = _child_module.linear.weight
|
234 |
+
|
235 |
+
up_weight = loras.pop(0)
|
236 |
+
down_weight = loras.pop(0)
|
237 |
+
|
238 |
+
_module._modules[name].lora_up.weight = nn.Parameter(
|
239 |
+
up_weight.type(weight.dtype).to(weight.device) * alpha
|
240 |
+
+ _module._modules[name].lora_up.weight.to(weight.device) * beta
|
241 |
+
)
|
242 |
+
_module._modules[name].lora_down.weight = nn.Parameter(
|
243 |
+
down_weight.type(weight.dtype).to(weight.device) * alpha
|
244 |
+
+ _module._modules[name].lora_down.weight.to(weight.device)
|
245 |
+
* beta
|
246 |
+
)
|
247 |
+
|
248 |
+
_module._modules[name].to(weight.device)
|
249 |
+
|
250 |
+
|
251 |
def tune_lora_scale(model, alpha: float = 1.0):
|
252 |
for _module in model.modules():
|
253 |
if _module.__class__.__name__ == "LoraInjectedLinear":
|
254 |
_module.scale = alpha
|
255 |
+
|
256 |
+
|
257 |
+
def _text_lora_path(path: str) -> str:
|
258 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
259 |
+
return ".".join(path.split(".")[:-1] + ["text_encoder", "pt"])
|
260 |
+
|
261 |
+
|
262 |
+
def _ti_lora_path(path: str) -> str:
|
263 |
+
assert path.endswith(".pt"), "Only .pt files are supported"
|
264 |
+
return ".".join(path.split(".")[:-1] + ["ti", "pt"])
|
265 |
+
|
266 |
+
|
267 |
+
def load_learned_embed_in_clip(
|
268 |
+
learned_embeds_path, text_encoder, tokenizer, token=None, idempotent=False
|
269 |
+
):
|
270 |
+
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
|
271 |
+
|
272 |
+
# separate token and the embeds
|
273 |
+
trained_token = list(loaded_learned_embeds.keys())[0]
|
274 |
+
embeds = loaded_learned_embeds[trained_token]
|
275 |
+
|
276 |
+
# cast to dtype of text_encoder
|
277 |
+
dtype = text_encoder.get_input_embeddings().weight.dtype
|
278 |
+
|
279 |
+
# add the token in tokenizer
|
280 |
+
token = token if token is not None else trained_token
|
281 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
282 |
+
i = 1
|
283 |
+
if num_added_tokens == 0 and idempotent:
|
284 |
+
return token
|
285 |
+
|
286 |
+
while num_added_tokens == 0:
|
287 |
+
print(f"The tokenizer already contains the token {token}.")
|
288 |
+
token = f"{token[:-1]}-{i}>"
|
289 |
+
print(f"Attempting to add the token {token}.")
|
290 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
291 |
+
i += 1
|
292 |
+
|
293 |
+
# resize the token embeddings
|
294 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
295 |
+
|
296 |
+
# get the id for the token and assign the embeds
|
297 |
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
298 |
+
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
|
299 |
+
return token
|
300 |
+
|
301 |
+
|
302 |
+
def patch_pipe(
|
303 |
+
pipe,
|
304 |
+
unet_path,
|
305 |
+
token,
|
306 |
+
alpha: float = 1.0,
|
307 |
+
r: int = 4,
|
308 |
+
patch_text=False,
|
309 |
+
patch_ti=False,
|
310 |
+
idempotent_token=True,
|
311 |
+
):
|
312 |
+
|
313 |
+
ti_path = _ti_lora_path(unet_path)
|
314 |
+
text_path = _text_lora_path(unet_path)
|
315 |
+
|
316 |
+
unet_has_lora = False
|
317 |
+
text_encoder_has_lora = False
|
318 |
+
|
319 |
+
for _module in pipe.unet.modules():
|
320 |
+
if _module.__class__.__name__ == "LoraInjectedLinear":
|
321 |
+
unet_has_lora = True
|
322 |
+
|
323 |
+
for _module in pipe.text_encoder.modules():
|
324 |
+
if _module.__class__.__name__ == "LoraInjectedLinear":
|
325 |
+
text_encoder_has_lora = True
|
326 |
+
|
327 |
+
if not unet_has_lora:
|
328 |
+
monkeypatch_lora(pipe.unet, torch.load(unet_path), r=r)
|
329 |
+
else:
|
330 |
+
monkeypatch_replace_lora(pipe.unet, torch.load(unet_path), r=r)
|
331 |
+
|
332 |
+
if patch_text:
|
333 |
+
if not text_encoder_has_lora:
|
334 |
+
monkeypatch_lora(
|
335 |
+
pipe.text_encoder,
|
336 |
+
torch.load(text_path),
|
337 |
+
target_replace_module=["CLIPAttention"],
|
338 |
+
r=r,
|
339 |
+
)
|
340 |
+
else:
|
341 |
+
|
342 |
+
monkeypatch_replace_lora(
|
343 |
+
pipe.text_encoder,
|
344 |
+
torch.load(text_path),
|
345 |
+
target_replace_module=["CLIPAttention"],
|
346 |
+
r=r,
|
347 |
+
)
|
348 |
+
if patch_ti:
|
349 |
+
token = load_learned_embed_in_clip(
|
350 |
+
ti_path,
|
351 |
+
pipe.text_encoder,
|
352 |
+
pipe.tokenizer,
|
353 |
+
token,
|
354 |
+
idempotent=idempotent_token,
|
355 |
+
)
|
lora_diffusion/to_ckpt_v2.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from https://gist.github.com/jachiam/8a5c0b607e38fcc585168b90c686eb05
|
2 |
+
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
3 |
+
# *Only* converts the UNet, VAE, and Text Encoder.
|
4 |
+
# Does not convert optimizer state or any other thing.
|
5 |
+
# Written by jachiam
|
6 |
+
import argparse
|
7 |
+
import os.path as osp
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
# =================#
|
13 |
+
# UNet Conversion #
|
14 |
+
# =================#
|
15 |
+
|
16 |
+
unet_conversion_map = [
|
17 |
+
# (stable-diffusion, HF Diffusers)
|
18 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
19 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
20 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
21 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
22 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
23 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
24 |
+
("out.0.weight", "conv_norm_out.weight"),
|
25 |
+
("out.0.bias", "conv_norm_out.bias"),
|
26 |
+
("out.2.weight", "conv_out.weight"),
|
27 |
+
("out.2.bias", "conv_out.bias"),
|
28 |
+
]
|
29 |
+
|
30 |
+
unet_conversion_map_resnet = [
|
31 |
+
# (stable-diffusion, HF Diffusers)
|
32 |
+
("in_layers.0", "norm1"),
|
33 |
+
("in_layers.2", "conv1"),
|
34 |
+
("out_layers.0", "norm2"),
|
35 |
+
("out_layers.3", "conv2"),
|
36 |
+
("emb_layers.1", "time_emb_proj"),
|
37 |
+
("skip_connection", "conv_shortcut"),
|
38 |
+
]
|
39 |
+
|
40 |
+
unet_conversion_map_layer = []
|
41 |
+
# hardcoded number of downblocks and resnets/attentions...
|
42 |
+
# would need smarter logic for other networks.
|
43 |
+
for i in range(4):
|
44 |
+
# loop over downblocks/upblocks
|
45 |
+
|
46 |
+
for j in range(2):
|
47 |
+
# loop over resnets/attentions for downblocks
|
48 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
49 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
50 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
51 |
+
|
52 |
+
if i < 3:
|
53 |
+
# no attention layers in down_blocks.3
|
54 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
55 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
56 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
57 |
+
|
58 |
+
for j in range(3):
|
59 |
+
# loop over resnets/attentions for upblocks
|
60 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
61 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
62 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
63 |
+
|
64 |
+
if i > 0:
|
65 |
+
# no attention layers in up_blocks.0
|
66 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
67 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
68 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
69 |
+
|
70 |
+
if i < 3:
|
71 |
+
# no downsample in down_blocks.3
|
72 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
73 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
74 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
75 |
+
|
76 |
+
# no upsample in up_blocks.3
|
77 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
78 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
79 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
80 |
+
|
81 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
82 |
+
sd_mid_atn_prefix = "middle_block.1."
|
83 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
84 |
+
|
85 |
+
for j in range(2):
|
86 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
87 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
88 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
89 |
+
|
90 |
+
|
91 |
+
def convert_unet_state_dict(unet_state_dict):
|
92 |
+
# buyer beware: this is a *brittle* function,
|
93 |
+
# and correct output requires that all of these pieces interact in
|
94 |
+
# the exact order in which I have arranged them.
|
95 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
96 |
+
for sd_name, hf_name in unet_conversion_map:
|
97 |
+
mapping[hf_name] = sd_name
|
98 |
+
for k, v in mapping.items():
|
99 |
+
if "resnets" in k:
|
100 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
101 |
+
v = v.replace(hf_part, sd_part)
|
102 |
+
mapping[k] = v
|
103 |
+
for k, v in mapping.items():
|
104 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
105 |
+
v = v.replace(hf_part, sd_part)
|
106 |
+
mapping[k] = v
|
107 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
108 |
+
return new_state_dict
|
109 |
+
|
110 |
+
|
111 |
+
# ================#
|
112 |
+
# VAE Conversion #
|
113 |
+
# ================#
|
114 |
+
|
115 |
+
vae_conversion_map = [
|
116 |
+
# (stable-diffusion, HF Diffusers)
|
117 |
+
("nin_shortcut", "conv_shortcut"),
|
118 |
+
("norm_out", "conv_norm_out"),
|
119 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
120 |
+
]
|
121 |
+
|
122 |
+
for i in range(4):
|
123 |
+
# down_blocks have two resnets
|
124 |
+
for j in range(2):
|
125 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
126 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
127 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
128 |
+
|
129 |
+
if i < 3:
|
130 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
131 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
132 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
133 |
+
|
134 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
135 |
+
sd_upsample_prefix = f"up.{3-i}.upsample."
|
136 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
137 |
+
|
138 |
+
# up_blocks have three resnets
|
139 |
+
# also, up blocks in hf are numbered in reverse from sd
|
140 |
+
for j in range(3):
|
141 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
142 |
+
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
143 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
144 |
+
|
145 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
146 |
+
for i in range(2):
|
147 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
148 |
+
sd_mid_res_prefix = f"mid.block_{i+1}."
|
149 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
150 |
+
|
151 |
+
|
152 |
+
vae_conversion_map_attn = [
|
153 |
+
# (stable-diffusion, HF Diffusers)
|
154 |
+
("norm.", "group_norm."),
|
155 |
+
("q.", "query."),
|
156 |
+
("k.", "key."),
|
157 |
+
("v.", "value."),
|
158 |
+
("proj_out.", "proj_attn."),
|
159 |
+
]
|
160 |
+
|
161 |
+
|
162 |
+
def reshape_weight_for_sd(w):
|
163 |
+
# convert HF linear weights to SD conv2d weights
|
164 |
+
return w.reshape(*w.shape, 1, 1)
|
165 |
+
|
166 |
+
|
167 |
+
def convert_vae_state_dict(vae_state_dict):
|
168 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
169 |
+
for k, v in mapping.items():
|
170 |
+
for sd_part, hf_part in vae_conversion_map:
|
171 |
+
v = v.replace(hf_part, sd_part)
|
172 |
+
mapping[k] = v
|
173 |
+
for k, v in mapping.items():
|
174 |
+
if "attentions" in k:
|
175 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
176 |
+
v = v.replace(hf_part, sd_part)
|
177 |
+
mapping[k] = v
|
178 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
179 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
180 |
+
for k, v in new_state_dict.items():
|
181 |
+
for weight_name in weights_to_convert:
|
182 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
183 |
+
print(f"Reshaping {k} for SD format")
|
184 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
185 |
+
return new_state_dict
|
186 |
+
|
187 |
+
|
188 |
+
# =========================#
|
189 |
+
# Text Encoder Conversion #
|
190 |
+
# =========================#
|
191 |
+
# pretty much a no-op
|
192 |
+
|
193 |
+
|
194 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
195 |
+
return text_enc_dict
|
196 |
+
|
197 |
+
|
198 |
+
def convert_to_ckpt(model_path, checkpoint_path, as_half):
|
199 |
+
|
200 |
+
assert model_path is not None, "Must provide a model path!"
|
201 |
+
|
202 |
+
assert checkpoint_path is not None, "Must provide a checkpoint path!"
|
203 |
+
|
204 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
205 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
206 |
+
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
207 |
+
|
208 |
+
# Convert the UNet model
|
209 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
210 |
+
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
211 |
+
unet_state_dict = {
|
212 |
+
"model.diffusion_model." + k: v for k, v in unet_state_dict.items()
|
213 |
+
}
|
214 |
+
|
215 |
+
# Convert the VAE model
|
216 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
217 |
+
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
218 |
+
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
219 |
+
|
220 |
+
# Convert the text encoder model
|
221 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
222 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
223 |
+
text_enc_dict = {
|
224 |
+
"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()
|
225 |
+
}
|
226 |
+
|
227 |
+
# Put together new checkpoint
|
228 |
+
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
229 |
+
if as_half:
|
230 |
+
state_dict = {k: v.half() for k, v in state_dict.items()}
|
231 |
+
state_dict = {"state_dict": state_dict}
|
232 |
+
torch.save(state_dict, checkpoint_path)
|