Spaces:
Runtime error
Runtime error
from langchain.llms import OpenAI | |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain | |
from langchain.docstore.document import Document | |
import requests | |
import pathlib | |
import subprocess | |
import tempfile | |
import os | |
import gradio as gr | |
import pickle | |
# using a vector space for our search | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores.faiss import FAISS | |
from langchain.text_splitter import CharacterTextSplitter | |
#To get markdowns from github fo Gradio (/or your) repo | |
def get_github_docs(repo_owner, repo_name): | |
with tempfile.TemporaryDirectory() as d: | |
subprocess.check_call( | |
f"git clone https://github.com/{repo_owner}/{repo_name}.git .", | |
cwd=d, | |
shell=True, | |
) | |
git_sha = ( | |
subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d) | |
.decode("utf-8") | |
.strip() | |
) | |
repo_path = pathlib.Path(d) | |
markdown_files = list(repo_path.rglob("*.md")) + list( | |
repo_path.rglob("*.mdx") | |
) | |
for markdown_file in markdown_files: | |
try: | |
with open(markdown_file, "r") as f: | |
relative_path = markdown_file.relative_to(repo_path) | |
github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}" | |
yield Document(page_content=f.read(), metadata={"source": github_url}) | |
except FileNotFoundError: | |
print(f"Could not open file: {markdown_file}") | |
#sources = get_github_docs("gradio-app", "gradio") | |
#source_chunks = [] | |
#splitter = CharacterTextSplitter(separator=" ", chunk_size=1024, chunk_overlap=0) | |
#for source in sources: | |
# for chunk in splitter.split_text(source.page_content): | |
# source_chunks.append(Document(page_content=chunk, metadata=source.metadata)) | |
#search_index = FAISS.from_documents(source_chunks, OpenAIEmbeddings()) #(source_chunks, OpenAIEmbeddings()) # <------ | |
#chain = load_qa_with_sources_chain(OpenAI(temperature=0)) ## <<--------- | |
#loading FAISS search index from disk | |
with open("search_index.pickle", "rb") as f: | |
search_index = pickle.load(f) | |
def print_answer(question, openai): #openai_embeddings | |
#search_index = get_search_index() | |
chain = load_qa_with_sources_chain(openai) #(OpenAI(temperature=0)) | |
response = ( | |
chain( | |
{ | |
"input_documents": search_index.similarity_search(question, k=4), | |
"question": question, | |
}, | |
return_only_outputs=True, | |
)["output_text"] | |
) | |
#print(response) | |
if len(response.split('\n')[-1].split())>2: | |
response = response.split('\n')[0] + ', '.join([' <a href="' + response.split('\n')[-1].split()[i] + '" target="_blank"><u>Click Link' + str(i) + '</u></a>' for i in range(1,len(response.split('\n')[-1].split()))]) | |
else: | |
response = response.split('\n')[0] + ' <a href="' + response.split('\n')[-1].split()[-1] + '" target="_blank"><u>Click Link</u></a>' | |
return response | |
def chat(message, history, openai_api_key): | |
#openai_embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
openai = OpenAI(temperature=0, openai_api_key=openai_api_key ) | |
#os.environ["OPENAI_API_KEY"] = openai_api_key | |
history = history or [] | |
message = message.lower() | |
response = print_answer(message, openai) #openai_embeddings | |
history.append((message, response)) | |
return history, history | |
#chatbot = gr.Chatbot().style(color_map=("green", "orange")) | |
with gr.Blocks() as demo: | |
#gr.Markdown("""<h1><centre>LangChain - powered - Gradio-Helper-Bot </h1></centre> """) | |
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
Gradio QandA - LangChain Bot | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Hi, I'm a Q and A Gradio expert bot, start by typing in your OpenAI API key, questions/issues you are facing in your Gradio implementations and then press enter.<br> | |
<a href="https://huggingface.co/spaces/ysharma/InstructPix2Pix_Chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate Space with GPU Upgrade for fast Inference & no queue<br> | |
Built using <a href="https://langchain.readthedocs.io/en/latest/" target="_blank">LangChain</a> and <a href="https://github.com/gradio-app/gradio" target="_blank">Gradio Github repo</a> | |
</p> | |
</div>""") | |
with gr.Row(): | |
question = gr.Textbox(label = 'Type in your questions about Gradio here and press Enter!', placeholder = 'What is the role of "every" argument in a component') | |
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here") | |
state = gr.State() | |
chatbot = gr.Chatbot() | |
question.submit(chat, [question, state, openai_api_key], [chatbot, state]) | |
if __name__ == "__main__": | |
demo.launch() | |