Spaces:
Runtime error
Runtime error
import time | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from PIL import Image | |
#from transformers import AutoProcessor, LlavaForConditionalGeneration | |
from transformers import TextIteratorStreamer | |
from transformers import LlavaNextForConditionalGeneration, LlavaNextProcessor | |
from PIL import Image | |
import requests | |
import spaces | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<img src="https://raw.githubusercontent.com/huggingface/blog/09dbdfd196a3112ecbb533fc0b6c700571cbc753/assets/179_falcon2-11b/thumbnail.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Falcon2-11B-VLM</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Falcon2-11B-VLM is an 11B parameters causal decoder-only model built by TII</p> | |
</div> | |
""" | |
model_id = "tiiuae/falcon-11B-vlm" | |
processor = LlavaNextProcessor.from_pretrained("tiiuae/falcon-11B-vlm", tokenizer_class='PreTrainedTokenizerFast') | |
model = LlavaNextForConditionalGeneration.from_pretrained("tiiuae/falcon-11B-vlm", | |
torch_dtype=torch.bfloat16, | |
#torch_dtype=torch.float16, | |
low_cpu_mem_usage=True,) | |
model.to("cuda:0") | |
def bot_streaming(message, history): | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
if message["files"]: | |
# message["files"][-1] is a Dict or just a string | |
if type(message["files"][-1]) == dict: | |
image = message["files"][-1]["path"] | |
else: | |
image = message["files"][-1] | |
else: | |
# if there's no image uploaded for this turn, look for images in the past turns | |
# kept inside tuples, take the last one | |
for hist in history: | |
if type(hist[0]) == tuple: | |
image = hist[0][0] | |
try: | |
if image is None: | |
# Handle the case where image is None | |
raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.") | |
except NameError: | |
# Handle the case where 'image' is not defined at all | |
raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.") | |
prompt = f"""User:<image>\n{message['text']} Falcon:""" | |
image = Image.open(image) | |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) | |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True}) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
# find <|eot_id|> and remove it from the new_text | |
if "<|eot_id|>" in new_text: | |
new_text = new_text.split("<|eot_id|>")[0] | |
buffer += new_text | |
yield buffer | |
chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1) | |
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
with gr.Blocks(fill_height=True, ) as demo: | |
gr.ChatInterface( | |
fn=bot_streaming, | |
title="FalconVLM", | |
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, | |
{"text": "How to make this pastry?", "files": ["./baklava.png"]}], | |
description="Try [tiiuae/falcon-11B-VLM](https://huggingface.co/tiiuae/falcon-11B-vlm). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", | |
stop_btn="Stop Generation", | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
cache_examples=False, | |
) | |
demo.queue() | |
demo.launch() |