ysharma HF staff commited on
Commit
3925278
·
1 Parent(s): d180769

create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ from PIL import Image
3
+ import gradio as gr
4
+
5
+ def upload_button_config():
6
+ return gr.update(visible=False)
7
+
8
+ def upload_textbox_config(text_in):
9
+ return gr.update(visible=True)
10
+
11
+ #takes input and generates the Response
12
+ def predict(btn_upload, counter,image_hid, input, history):
13
+
14
+ if counter == 0:
15
+ image_in = Image.open(btn_upload)
16
+ #Resizing the image
17
+ basewidth = 512
18
+ wpercent = (basewidth/float(image_in.size[0]))
19
+ hsize = int((float(image_in.size[1])*float(wpercent)))
20
+ image_in = image_in.resize((basewidth,hsize)) #, Image.Resampling.LANCZOS)
21
+ # Save the image to the file-like object
22
+ #seed = random.randint(0, 1000000)
23
+ img_name = "uploaded_image.png" #f"./edited_image_{seed}.png"
24
+ image_in.save(img_name)
25
+ #add state
26
+ history = history or []
27
+ response = '<img src="/file=' + img_name + '">'
28
+ history.append((input, response))
29
+ counter += 1
30
+ return history, history, img_name, counter, image_in
31
+
32
+ #process the input prompt and image
33
+ #image = Image.open(btn_upload)
34
+ print(f"prompt is :{input}") #Question: Is this photo unusual? Answer:
35
+ input = f"Question: {input} Answer:"
36
+ inputs = processor(image_hid, text=input, return_tensors="pt").to(device, torch.float16)
37
+
38
+ #generte the response
39
+ generated_ids = model.generate(**inputs, max_new_tokens=10)
40
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
41
+ print(f"generated_text is : {generated_text}")
42
+
43
+ #add state
44
+ history = history or []
45
+ response = generated_text #'<img src="/file=' + img_name + '">'
46
+ history.append((input, response))
47
+ counter += 1
48
+ return history, history, "uploaded_image.png", counter, image_hid
49
+
50
+ #Blocks Layout
51
+ with gr.Blocks() as demo:
52
+ with gr.Column():
53
+ #text_in = gr.Textbox(value='', placeholder="Type your questions here and press enter", elem_id = "input_prompt", visible=False, label='Great! Now you can ask questions to get more information about the image')
54
+ btn_upload = gr.UploadButton("Upload image!", file_types=["image"], file_count="single", elem_id="upload_button")
55
+ chatbot = gr.Chatbot(elem_id = 'chatbot-component', label='Conversational with Images')
56
+ text_in = gr.Textbox(value='', placeholder="Type your questions here and press enter", elem_id = "input_prompt", visible=False, label='Great! Now you can ask questions to get more information about the image')
57
+ state_in = gr.State()
58
+ counter_out = gr.Number(visible=False, value=0, precision=0)
59
+ text_out = gr.Textbox(visible=False) #getting imag name out
60
+ image_hid = gr.Image() #visible=False) #, type='pil')
61
+
62
+ #Using Event Listeners
63
+ btn_upload.upload(predict, [btn_upload, counter_out, image_hid, text_in, state_in], [chatbot, state_in, text_out, counter_out, image_hid])
64
+ btn_upload.upload(fn = upload_textbox_config, inputs=text_in, outputs = text_in)
65
+
66
+ text_in.submit(predict, [btn_upload, counter_out, image_hid, text_in, state_in], [chatbot, state_in, text_out, counter_out, image_hid])
67
+ #text_in.submit(previous, [image_hid], [image_oneup])
68
+
69
+ chatbot.change(fn = upload_button_config, outputs=btn_upload) #, scroll_to_output = True)
70
+ #text_in.submit(None, [], [], _js = "() => document.getElementById('#chatbot-component').scrollTop = document.getElementById('#chatbot-component').scrollHeight")
71
+
72
+ #with gr.Accordion("Release Notes", open=False):
73
+ #gr.Markdown(help_text)
74
+
75
+ demo.queue(concurrency_count=10)
76
+ demo.launch(debug=True) #, width="80%", height=2000)