ysharma HF staff commited on
Commit
7aecf5a
·
1 Parent(s): 9784e45

update theme for slider

Browse files
Files changed (1) hide show
  1. app.py +15 -29
app.py CHANGED
@@ -11,41 +11,28 @@ model_glm = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True
11
  model_glm = model_glm.eval()
12
 
13
  # Load pre-trained model and tokenizer for Chinese to English translator
14
- from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
15
- model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
16
- tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
17
 
18
- def translate_Chinese_English(chinese_text):
19
- # translate Chinese to English
20
- tokenizer_chtoen.src_lang = "zh"
21
- encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt")
22
- generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en"))
23
- trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True)
24
- return trans_eng_text[0]
25
 
26
 
27
  # Define function to generate model predictions and update the history
28
- def predict_glm_stream(input, top_p, temperature, history=[]): #, top_p, temperature):
29
- print(f"1 outside for loop OG history is ^^- {history}")
30
  history = list(map(tuple, history))
31
- print(f"2 outside for loop OG history is ^^- {history}")
32
- for response, updates in model_glm.stream_chat(tokenizer_glm, input, history, top_p=top_p, temperature=temperature): #history
33
- print(f"In for loop resonse is ^^- {response}")
34
- print(f"In for loop updates is ^^- {updates}")
35
- # translate Chinese to English
36
- #history = [(query, translate_Chinese_English(response)) for query, response in history]
37
- print(f"*******")
38
- yield updates #history+updates
39
-
40
 
41
  def reset_textbox():
42
  return gr.update(value="")
43
 
44
- def reset_chat(chatbot, state):
45
- # debug
46
- #print(f"^^chatbot value is - {chatbot}")
47
- #print(f"^^state value is - {state}")
48
- return None, []
 
 
49
 
50
 
51
  title = """<h1 align="center"> 🚀CHatGLM-6B - A Streaming Chatbot with Gradio</h1>
@@ -60,7 +47,7 @@ However, due to the small size of ChatGLM-6B, it is currently known to have cons
60
  theme = gr.themes.Default(#color contructors
61
  primary_hue="violet",
62
  secondary_hue="indigo",
63
- neutral_hue="purple")
64
 
65
  with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;}
66
  #chatglm {height: 520px; overflow: auto;} """, theme=theme ) as demo:
@@ -80,7 +67,7 @@ with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;}
80
  with gr.Box():
81
  chatbot_glm = gr.Chatbot(elem_id="chatglm", label='THUDM-ChatGLM6B')
82
 
83
- with gr.Box():
84
  gr.HTML("Parameters for ChatGLM-6B", visible=True)
85
  top_p = gr.Slider(minimum=-0, maximum=1.0,value=1, step=0.05,interactive=True, label="Top-p", visible=True)
86
  temperature = gr.Slider(minimum=-0, maximum=5.0, value=1, step=0.1, interactive=True, label="Temperature", visible=True)
@@ -95,7 +82,6 @@ with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;}
95
  [chatbot_glm],)
96
  b1.click(reset_textbox, [], [inputs])
97
 
98
- #b2.click(reset_chat, [chatbot_glm, state_glm], [chatbot_glm, state_glm])
99
  b2.click(lambda: None, None, chatbot_glm, queue=False)
100
 
101
  gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_Streaming?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
 
11
  model_glm = model_glm.eval()
12
 
13
  # Load pre-trained model and tokenizer for Chinese to English translator
14
+ #from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
15
+ #model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
16
+ #tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
17
 
 
 
 
 
 
 
 
18
 
19
 
20
  # Define function to generate model predictions and update the history
21
+ def predict_glm_stream(input, top_p, temperature, history=[]):
 
22
  history = list(map(tuple, history))
23
+ for response, updates in model_glm.stream_chat(tokenizer_glm, input, history, top_p=top_p, temperature=temperature):
24
+ yield updates
 
 
 
 
 
 
 
25
 
26
  def reset_textbox():
27
  return gr.update(value="")
28
 
29
+ def translate_Chinese_English(chinese_text):
30
+ # translate Chinese to English
31
+ tokenizer_chtoen.src_lang = "zh"
32
+ encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt")
33
+ generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en"))
34
+ trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True)
35
+ return trans_eng_text[0]
36
 
37
 
38
  title = """<h1 align="center"> 🚀CHatGLM-6B - A Streaming Chatbot with Gradio</h1>
 
47
  theme = gr.themes.Default(#color contructors
48
  primary_hue="violet",
49
  secondary_hue="indigo",
50
+ neutral_hue="purple").set(slider_color="#800080")
51
 
52
  with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;}
53
  #chatglm {height: 520px; overflow: auto;} """, theme=theme ) as demo:
 
67
  with gr.Box():
68
  chatbot_glm = gr.Chatbot(elem_id="chatglm", label='THUDM-ChatGLM6B')
69
 
70
+ with gr.Accordion(label="Parameters for ChatGLM-6B", open=False):
71
  gr.HTML("Parameters for ChatGLM-6B", visible=True)
72
  top_p = gr.Slider(minimum=-0, maximum=1.0,value=1, step=0.05,interactive=True, label="Top-p", visible=True)
73
  temperature = gr.Slider(minimum=-0, maximum=5.0, value=1, step=0.1, interactive=True, label="Temperature", visible=True)
 
82
  [chatbot_glm],)
83
  b1.click(reset_textbox, [], [inputs])
84
 
 
85
  b2.click(lambda: None, None, chatbot_glm, queue=False)
86
 
87
  gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGLM-6b_Gradio_Streaming?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')