Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
import requests | |
import os | |
from text_generation import Client, InferenceAPIClient | |
# Load pre-trained model and tokenizer - for THUDM model | |
from transformers import AutoModel, AutoTokenizer | |
tokenizer_glm = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) | |
model_glm = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() | |
model_glm = model_glm.eval() | |
# Load pre-trained model and tokenizer for Chinese to English translator | |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer | |
model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") | |
tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") | |
#Streaming endpoint for OPENAI ChatGPT | |
API_URL = "https://api.openai.com/v1/chat/completions" | |
#Streaming endpoint for OPENCHATKIT | |
API_URL_TGTHR = os.getenv('API_URL_TGTHR') | |
openchat_preprompt = ( | |
"\n<human>: Hi!\n<bot>: My name is Bot, model version is 0.15, part of an open-source kit for " | |
"fine-tuning new bots! I was created by Together, LAION, and Ontocord.ai and the open-source " | |
"community. I am not human, not evil and not alive, and thus have no thoughts and feelings, " | |
"but I am programmed to be helpful, polite, honest, and friendly.\n") | |
#Predict function for CHATGPT | |
def predict_chatgpt(inputs, top_p_chatgpt, temperature_chatgpt, openai_api_key, chat_counter_chatgpt, chatbot_chatgpt=[], history=[]): | |
#Define payload and header for chatgpt API | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": [{"role": "user", "content": f"{inputs}"}], | |
"temperature" : 1.0, | |
"top_p":1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}" | |
} | |
#debug | |
#print(f"chat_counter_chatgpt - {chat_counter_chatgpt}") | |
#Handling the different roles for ChatGPT | |
if chat_counter_chatgpt != 0 : | |
messages=[] | |
for data in chatbot_chatgpt: | |
temp1 = {} | |
temp1["role"] = "user" | |
temp1["content"] = data[0] | |
temp2 = {} | |
temp2["role"] = "assistant" | |
temp2["content"] = data[1] | |
messages.append(temp1) | |
messages.append(temp2) | |
temp3 = {} | |
temp3["role"] = "user" | |
temp3["content"] = inputs | |
messages.append(temp3) | |
payload = { | |
"model": "gpt-3.5-turbo", | |
"messages": messages, #[{"role": "user", "content": f"{inputs}"}], | |
"temperature" : temperature_chatgpt, #1.0, | |
"top_p": top_p_chatgpt, #1.0, | |
"n" : 1, | |
"stream": True, | |
"presence_penalty":0, | |
"frequency_penalty":0, | |
} | |
chat_counter_chatgpt+=1 | |
history.append(inputs) | |
# make a POST request to the API endpoint using the requests.post method, passing in stream=True | |
response = requests.post(API_URL, headers=headers, json=payload, stream=True) | |
token_counter = 0 | |
partial_words = "" | |
counter=0 | |
for chunk in response.iter_lines(): | |
#Skipping the first chunk | |
if counter == 0: | |
counter+=1 | |
continue | |
# check whether each line is non-empty | |
if chunk.decode() : | |
chunk = chunk.decode() | |
# decode each line as response data is in bytes | |
if len(chunk) > 13 and "content" in json.loads(chunk[6:])['choices'][0]["delta"]: | |
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] | |
if token_counter == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list | |
token_counter+=1 | |
yield chat, history, chat_counter_chatgpt # this resembles {chatbot: chat, state: history} | |
#Predict function for OPENCHATKIT | |
def predict_together(model: str, | |
inputs: str, | |
top_p: float, | |
temperature: float, | |
top_k: int, | |
repetition_penalty: float, | |
watermark: bool, | |
chatbot, | |
history,): | |
client = Client(os.getenv("API_URL_TGTHR")) #get_client(model) | |
# debug | |
#print(f"^^client is - {client}") | |
user_name, assistant_name = "<human>: ", "<bot>: " | |
preprompt = openchat_preprompt | |
sep = '\n' | |
history.append(inputs) | |
past = [] | |
for data in chatbot: | |
user_data, model_data = data | |
if not user_data.startswith(user_name): | |
user_data = user_name + user_data | |
if not model_data.startswith("\n" + assistant_name): | |
model_data = "\n" + assistant_name + model_data | |
past.append(user_data + model_data.rstrip() + "\n") | |
if not inputs.startswith(user_name): | |
inputs = user_name + inputs | |
total_inputs = preprompt + "".join(past) + inputs + "\n" + assistant_name.rstrip() | |
# truncate total_inputs | |
#total_inputs = total_inputs[-1000:] | |
partial_words = "" | |
for i, response in enumerate(client.generate_stream( | |
total_inputs, | |
top_p=top_p, | |
top_k=top_k, | |
repetition_penalty=repetition_penalty, | |
watermark=watermark, | |
temperature=temperature, | |
max_new_tokens=500, | |
stop_sequences=[user_name.rstrip(), assistant_name.rstrip()], | |
)): | |
if response.token.special: | |
continue | |
partial_words = partial_words + response.token.text | |
if partial_words.endswith(user_name.rstrip()): | |
partial_words = partial_words.rstrip(user_name.rstrip()) | |
if partial_words.endswith(assistant_name.rstrip()): | |
partial_words = partial_words.rstrip(assistant_name.rstrip()) | |
if i == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
chat = [ | |
(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2) | |
] | |
yield chat, history | |
# Define function to generate model predictions and update the history | |
def predict_glm(input, history=[]): | |
response, history = model_glm.chat(tokenizer_glm, input, history) | |
# translate Chinese to English | |
history = [(query, translate_Chinese_English(response)) for query, response in history] | |
return history, history #[history] + updates | |
def translate_Chinese_English(chinese_text): | |
# translate Chinese to English | |
tokenizer_chtoen.src_lang = "zh" | |
encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt") | |
generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en")) | |
trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True) | |
return trans_eng_text[0] | |
""" | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
state = gr.State([]) | |
with gr.Row(): | |
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) | |
txt.submit(predict, [txt, state], [chatbot, state]) | |
demo.launch(debug=True) | |
""" | |
def reset_textbox(): | |
return gr.update(value="") | |
def reset_chat(chatbot, state): | |
# debug | |
#print(f"^^chatbot value is - {chatbot}") | |
#print(f"^^state value is - {state}") | |
return None, [] | |
#title = """<h1 align="center">🔥🔥Comparison: ChatGPT & OpenChatKit </h1><br><h3 align="center">🚀A Gradio Streaming Demo</h3><br>Official Demo: <a href="https://huggingface.co/spaces/togethercomputer/OpenChatKit">OpenChatKit feedback app</a>""" | |
title = """<h1 align="center">🔥🔥Comparison: ChatGPT & Open Sourced CHatGLM-6B </h1><br><h3 align="center">🚀A Gradio Chatbot Demo</h3>""" | |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
``` | |
User: <utterance> | |
Assistant: <utterance> | |
User: <utterance> | |
Assistant: <utterance> | |
... | |
``` | |
In this app, you can explore the outputs of multiple LLMs when prompted in similar ways. | |
""" | |
with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;} | |
#chatgpt {height: 520px; overflow: auto;} | |
#chatglm {height: 520px; overflow: auto;} """ ) as demo: | |
#chattogether {height: 520px; overflow: auto;} """ ) as demo: | |
#clear {width: 100px; height:50px; font-size:12px}""") as demo: | |
gr.HTML(title) | |
with gr.Row(): | |
with gr.Column(scale=14): | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(scale=13): | |
openai_api_key = gr.Textbox(type='password', label="Enter your OpenAI API key here for ChatGPT") | |
inputs = gr.Textbox(placeholder="Hi there!", label="Type an input and press Enter ⤵️ " ) | |
with gr.Column(scale=1): | |
b1 = gr.Button('🏃Run', elem_id = 'run').style(full_width=True) | |
b2 = gr.Button('🔄Clear up Chatbots!', elem_id = 'clear').style(full_width=True) | |
state_chatgpt = gr.State([]) | |
#state_together = gr.State([]) | |
state_glm = gr.State([]) | |
with gr.Box(): | |
with gr.Row(): | |
chatbot_chatgpt = gr.Chatbot(elem_id="chatgpt", label='ChatGPT API - OPENAI') | |
#chatbot_together = gr.Chatbot(elem_id="chattogether", label='OpenChatKit - Text Generation') | |
chatbot_glm = gr.Chatbot(elem_id="chatglm", label='THUDM-ChatGLM6B') | |
with gr.Column(scale=2, elem_id='parameters'): | |
with gr.Box(): | |
gr.HTML("Parameters for #OpenCHAtKit", visible=False) | |
top_p = gr.Slider(minimum=-0, maximum=1.0,value=0.25, step=0.05,interactive=True, label="Top-p", visible=False) | |
temperature = gr.Slider(minimum=-0, maximum=5.0, value=0.6, step=0.1, interactive=True, label="Temperature", visible=False) | |
top_k = gr.Slider( minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", visible=False) | |
repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.01, step=0.01, interactive=True, label="Repetition Penalty", visible=False) | |
watermark = gr.Checkbox(value=True, label="Text watermarking", visible=False) | |
model = gr.CheckboxGroup(value="Rallio67/joi2_20B_instruct_alpha", | |
choices=["togethercomputer/GPT-NeoXT-Chat-Base-20B", "Rallio67/joi2_20B_instruct_alpha", "google/flan-t5-xxl", "google/flan-ul2", "bigscience/bloomz", "EleutherAI/gpt-neox-20b",], | |
label="Model",visible=False,) | |
temp_textbox_together = gr.Textbox(value=model.choices[0], visible=False) | |
with gr.Box(): | |
gr.HTML("Parameters for OpenAI's ChatGPT") | |
top_p_chatgpt = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p",) | |
temperature_chatgpt = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) | |
chat_counter_chatgpt = gr.Number(value=0, visible=False, precision=0) | |
inputs.submit(reset_textbox, [], [inputs]) | |
inputs.submit( predict_chatgpt, | |
[inputs, top_p_chatgpt, temperature_chatgpt, openai_api_key, chat_counter_chatgpt, chatbot_chatgpt, state_chatgpt], | |
[chatbot_chatgpt, state_chatgpt, chat_counter_chatgpt],) | |
#inputs.submit( predict_together, | |
# [temp_textbox_together, inputs, top_p, temperature, top_k, repetition_penalty, watermark, chatbot_together, state_together, ], | |
# [chatbot_together, state_together],) | |
inputs.submit( predict_glm, | |
[inputs, state_glm, ], | |
[chatbot_glm, state_glm],) | |
b1.click( predict_chatgpt, | |
[inputs, top_p_chatgpt, temperature_chatgpt, openai_api_key, chat_counter_chatgpt, chatbot_chatgpt, state_chatgpt], | |
[chatbot_chatgpt, state_chatgpt, chat_counter_chatgpt],) | |
#b1.click( predict_together, | |
# [temp_textbox_together, inputs, top_p, temperature, top_k, repetition_penalty, watermark, chatbot_together, state_together, ], | |
# [chatbot_together, state_together],) | |
b1.click( predict_glm, | |
[inputs, state_glm, ], | |
[chatbot_glm, state_glm],) | |
b2.click(reset_chat, [chatbot_chatgpt, state_chatgpt], [chatbot_chatgpt, state_chatgpt]) | |
#b2.click(reset_chat, [chatbot_together, state_together], [chatbot_together, state_together]) | |
b2.click(reset_chat, [chatbot_glm, state_glm], [chatbot_glm, state_glm]) | |
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/OpenChatKit_ChatGPT_Comparison?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''') | |
gr.Markdown(description) | |
demo.queue(concurrency_count=16).launch(height= 2500, debug=True) |