Spaces:
Runtime error
Runtime error
create app file
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from PIL import Image
|
4 |
+
import base64
|
5 |
+
import requests
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.llms import OpenAI
|
8 |
+
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
9 |
+
from langchain.docstore.document import Document
|
10 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
11 |
+
from langchain.vectorstores.faiss import FAISS
|
12 |
+
import pickle
|
13 |
+
|
14 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
|
15 |
+
|
16 |
+
model_name = "sentence-transformers/all-mpnet-base-v2"
|
17 |
+
hf = HuggingFaceEmbeddings(model_name=model_name)
|
18 |
+
|
19 |
+
#Loading FAISS search index from disk
|
20 |
+
#This is a vector space of embeddings from one-tenth of PlaygrondAI image-prompts
|
21 |
+
#PlaygrondAI open-sourced dataset is a collection of around 1.3 mil generated images and caption pairs
|
22 |
+
with open("search_index0.pickle", "rb") as f:
|
23 |
+
search_index = pickle.load(f)
|
24 |
+
|
25 |
+
#Defining methods for inference
|
26 |
+
def encode(img):
|
27 |
+
#Encode source image file to base64 string
|
28 |
+
with open(img, "rb") as image_file:
|
29 |
+
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
30 |
+
#Returning image as encoded string
|
31 |
+
return encoded_string
|
32 |
+
|
33 |
+
def get_caption(image_in):
|
34 |
+
#Sending requests to BLIP2 Gradio-space API
|
35 |
+
BLIP2_GRADIO_API_URL = "https://nielsr-comparing-captioning-models.hf.space/run/predict"
|
36 |
+
response = requests.post(BLIP2_GRADIO_API_URL, json={
|
37 |
+
"data": ["data:image/jpg;base64," + encode(image_in) ]
|
38 |
+
}).json()
|
39 |
+
data = response["data"][-1]
|
40 |
+
return data
|
41 |
+
|
42 |
+
def Image_similarity_search(image_in):
|
43 |
+
#Get image caption from Bip2 Gradio space
|
44 |
+
img_caption = get_caption(image_in)
|
45 |
+
print(f"Image caption from Blip2 Gradio Space is - {img_caption}")
|
46 |
+
#Searching the vector space
|
47 |
+
search_result = search_index.similarity_search(img_caption)[0]
|
48 |
+
#Formatting the search results
|
49 |
+
pai_prompt = list(search_result)[0][1]
|
50 |
+
pai_img_link = list(search_result)[-2][-1]['source']
|
51 |
+
#formatting html output for displaying image
|
52 |
+
html_tag = "<img src='"+pai_img_link+"' alt='"+img_caption+"' height='512' style='display: block; margin: auto;'>"
|
53 |
+
return pai_prompt, html_tag
|
54 |
+
|
55 |
+
#Defining Gradio Blocks
|
56 |
+
with gr.Blocks(css = """#label_mid {padding-top: 2px; padding-bottom: 2px;}
|
57 |
+
#label_results {padding-top: 5px; padding-bottom: 1px;}
|
58 |
+
""") as demo:
|
59 |
+
with gr.Column(scale=2):
|
60 |
+
pass
|
61 |
+
with gr.Column(scale=1):
|
62 |
+
label_top = gr.HTML(value= "<center>🖼️Upload an Image for your search📷</center>", elem_id="label_top")
|
63 |
+
image_in = gr.Image(label="Upoload an Image for search", type='filepath', elem_id="image_in")
|
64 |
+
label_mid = gr.HTML(value= "<p style='text-align: center; color: red;'>Or</center></p>", elem_id='label_mid')
|
65 |
+
label_bottom = gr.HTML(value= "<center>🔍Type in your serch query and press Enter</center>", elem_id="label_bottom")
|
66 |
+
search_query = gr.Textbox(placeholder="Example: A small cat sitting", label="", elem_id="search_query")
|
67 |
+
#b1 = gr.Button("Search").style(full_width=False)
|
68 |
+
label_results = gr.HTML(value= "<p style='text-align: center; color: blue; font-weight: bold;'>Search results from PlaygroundAI</center></p>", elem_id="label_results")
|
69 |
+
img_search = gr.HTML(label = 'Image search results from PlaygroundAI dataset', elem_id="img_search")
|
70 |
+
pai_prompt = gr.Textbox(label="Image prompt from PlaygroundAI dataset", elem_id="pai_prompt")
|
71 |
+
with gr.Column(scale=2):
|
72 |
+
pass
|
73 |
+
|
74 |
+
image_in.change(Image_similarity_search, image_in, [pai_prompt, img_search] )
|
75 |
+
#b1.click(Image_similarity_search, image_in, [pai_prompt, img_search] )
|
76 |
+
|
77 |
+
demo.launch(debug=True)
|