Spaces:
Running
Running
import torch | |
import torch.nn.functional as F | |
from torchcomp import compexp_gain, db2amp | |
from torchlpc import sample_wise_lpc | |
from typing import List, Tuple, Union, Any, Optional | |
import math | |
def inv_22(a, b, c, d): | |
return torch.stack([d, -b, -c, a]).view(2, 2) / (a * d - b * c) | |
def eig_22(a, b, c, d): | |
# https://croninprojects.org/Vince/Geodesy/FindingEigenvectors.pdf | |
T = a + d | |
D = a * d - b * c | |
half_T = T * 0.5 | |
root = torch.sqrt(half_T * half_T - D) # + 0j) | |
L = torch.stack([half_T + root, half_T - root]) | |
y = (L - a) / b | |
# y = c / L | |
V = torch.stack([torch.ones_like(y), y]) | |
return L, V / V.abs().square().sum(0).sqrt() | |
def fir(x, b): | |
padded = F.pad(x.reshape(-1, 1, x.size(-1)), (b.size(0) - 1, 0)) | |
return F.conv1d(padded, b.flip(0).view(1, 1, -1)).view(*x.shape) | |
def allpole(x: torch.Tensor, a: torch.Tensor): | |
h = x.reshape(-1, x.shape[-1]) | |
return sample_wise_lpc( | |
h, | |
a.broadcast_to(h.shape + a.shape), | |
).reshape(*x.shape) | |
def biquad(x: torch.Tensor, b0, b1, b2, a0, a1, a2): | |
b0 = b0 / a0 | |
b1 = b1 / a0 | |
b2 = b2 / a0 | |
a1 = a1 / a0 | |
a2 = a2 / a0 | |
beta1 = b1 - b0 * a1 | |
beta2 = b2 - b0 * a2 | |
tmp = a1.square() - 4 * a2 | |
if tmp < 0: | |
pole = 0.5 * (-a1 + 1j * torch.sqrt(-tmp)) | |
u = -1j * x[..., :-1] | |
h = sample_wise_lpc( | |
u.reshape(-1, u.shape[-1]), | |
-pole.broadcast_to(u.shape).reshape(-1, u.shape[-1], 1), | |
).reshape(*u.shape) | |
h = ( | |
h.real * (beta1 * pole.real / pole.imag + beta2 / pole.imag) | |
- beta1 * h.imag | |
) | |
else: | |
L, V = eig_22(-a1, -a2, torch.ones_like(a1), torch.zeros_like(a1)) | |
inv_V = inv_22(*V.view(-1)) | |
C = torch.stack([beta1, beta2]) @ V | |
# project input to eigen space | |
h = x[..., :-1].unsqueeze(-2) * inv_V[:, :1] | |
L = L.unsqueeze(-1).broadcast_to(h.shape) | |
h = ( | |
sample_wise_lpc(h.reshape(-1, h.shape[-1]), -L.reshape(-1, L.shape[-1], 1)) | |
.reshape(*h.shape) | |
.transpose(-2, -1) | |
) @ C | |
tmp = b0 * x | |
y = torch.cat([tmp[..., :1], h + tmp[..., 1:]], -1) | |
return y | |
def highpass_biquad_coef( | |
sample_rate: int, | |
cutoff_freq: torch.Tensor, | |
Q: torch.Tensor, | |
): | |
w0 = 2 * torch.pi * cutoff_freq / sample_rate | |
alpha = torch.sin(w0) / 2.0 / Q | |
b0 = (1 + torch.cos(w0)) / 2 | |
b1 = -1 - torch.cos(w0) | |
b2 = b0 | |
a0 = 1 + alpha | |
a1 = -2 * torch.cos(w0) | |
a2 = 1 - alpha | |
return b0, b1, b2, a0, a1, a2 | |
def apply_biquad(bq): | |
return lambda waveform, *args, **kwargs: biquad(waveform, *bq(*args, **kwargs)) | |
highpass_biquad = apply_biquad(highpass_biquad_coef) | |
def lowpass_biquad_coef( | |
sample_rate: int, | |
cutoff_freq: torch.Tensor, | |
Q: torch.Tensor, | |
): | |
w0 = 2 * torch.pi * cutoff_freq / sample_rate | |
alpha = torch.sin(w0) / 2 / Q | |
b0 = (1 - torch.cos(w0)) / 2 | |
b1 = 1 - torch.cos(w0) | |
b2 = b0 | |
a0 = 1 + alpha | |
a1 = -2 * torch.cos(w0) | |
a2 = 1 - alpha | |
return b0, b1, b2, a0, a1, a2 | |
def equalizer_biquad_coef( | |
sample_rate: int, | |
center_freq: torch.Tensor, | |
gain: torch.Tensor, | |
Q: torch.Tensor, | |
): | |
w0 = 2 * torch.pi * center_freq / sample_rate | |
A = torch.exp(gain / 40.0 * math.log(10)) | |
alpha = torch.sin(w0) / 2 / Q | |
b0 = 1 + alpha * A | |
b1 = -2 * torch.cos(w0) | |
b2 = 1 - alpha * A | |
a0 = 1 + alpha / A | |
a1 = -2 * torch.cos(w0) | |
a2 = 1 - alpha / A | |
return b0, b1, b2, a0, a1, a2 | |
def lowshelf_biquad_coef( | |
sample_rate: int, | |
cutoff_freq: torch.Tensor, | |
gain: torch.Tensor, | |
Q: torch.Tensor, | |
): | |
w0 = 2 * torch.pi * cutoff_freq / sample_rate | |
A = torch.exp(gain / 40.0 * math.log(10)) | |
alpha = torch.sin(w0) / 2 / Q | |
cosw0 = torch.cos(w0) | |
sqrtA = torch.sqrt(A) | |
b0 = A * (A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA) | |
b1 = 2 * A * (A - 1 - (A + 1) * cosw0) | |
b2 = A * (A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA) | |
a0 = A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA | |
a1 = -2 * (A - 1 + (A + 1) * cosw0) | |
a2 = A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA | |
return b0, b1, b2, a0, a1, a2 | |
def highshelf_biquad_coef( | |
sample_rate: int, | |
cutoff_freq: torch.Tensor, | |
gain: torch.Tensor, | |
Q: torch.Tensor, | |
): | |
w0 = 2 * torch.pi * cutoff_freq / sample_rate | |
A = torch.exp(gain / 40.0 * math.log(10)) | |
alpha = torch.sin(w0) / 2 / Q | |
cosw0 = torch.cos(w0) | |
sqrtA = torch.sqrt(A) | |
b0 = A * (A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA) | |
b1 = -2 * A * (A - 1 + (A + 1) * cosw0) | |
b2 = A * (A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA) | |
a0 = A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA | |
a1 = 2 * (A - 1 - (A + 1) * cosw0) | |
a2 = A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA | |
return b0, b1, b2, a0, a1, a2 | |
highpass_biquad = apply_biquad(highpass_biquad_coef) | |
lowpass_biquad = apply_biquad(lowpass_biquad_coef) | |
highshelf_biquad = apply_biquad(highshelf_biquad_coef) | |
lowshelf_biquad = apply_biquad(lowshelf_biquad_coef) | |
equalizer_biquad = apply_biquad(equalizer_biquad_coef) | |
def avg(rms: torch.Tensor, avg_coef: torch.Tensor): | |
assert torch.all(avg_coef > 0) and torch.all(avg_coef <= 1) | |
h = rms * avg_coef | |
return sample_wise_lpc( | |
h, | |
(avg_coef - 1).broadcast_to(h.shape).unsqueeze(-1), | |
) | |
def avg_rms(audio: torch.Tensor, avg_coef) -> torch.Tensor: | |
return avg(audio.square().clamp_min(1e-8), avg_coef).sqrt() | |
def compressor_expander( | |
x: torch.Tensor, | |
avg_coef: Union[torch.Tensor, float], | |
cmp_th: Union[torch.Tensor, float], | |
cmp_ratio: Union[torch.Tensor, float], | |
exp_th: Union[torch.Tensor, float], | |
exp_ratio: Union[torch.Tensor, float], | |
at: Union[torch.Tensor, float], | |
rt: Union[torch.Tensor, float], | |
make_up: torch.Tensor, | |
lookahead_func=lambda x: x, | |
): | |
rms = avg_rms(x, avg_coef=avg_coef) | |
gain = compexp_gain(rms, cmp_th, cmp_ratio, exp_th, exp_ratio, at, rt) | |
gain = lookahead_func(gain) | |
return x * gain * db2amp(make_up).broadcast_to(x.shape[0], 1) | |