diffvox / app.py
yoyolicoris's picture
feat: add RMS averaging coefficient slider and update compressor plot handling
9c9d4eb
raw
history blame
29.3 kB
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import torch
import yaml
import json
import pyloudnorm as pyln
from hydra.utils import instantiate
from soxr import resample
from functools import partial, reduce
from torchcomp import coef2ms, ms2coef
from copy import deepcopy
from modules.utils import vec2statedict, get_chunks
from modules.fx import clip_delay_eq_Q
from plot_utils import get_log_mags_from_eq
def chain_functions(*functions):
return lambda *initial_args: reduce(
lambda xs, f: f(*xs) if isinstance(xs, tuple) else f(xs),
functions,
initial_args,
)
title_md = "# Vocal Effects Generator"
description_md = """
This is a demo of the paper [DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions](https://arxiv.org/abs/2504.14735), accepted at DAFx 2025.
In this demo, you can upload a raw vocal audio file (in mono) and apply random effects to make it sound better!
The effects consist of series of EQ, compressor, delay, and reverb.
The generator is a PCA model derived from 365 vocal effects presets fitted with the same effects chain.
This interface allows you to control the principal components (PCs) of the generator, randomise them, and render the audio.
To give you some idea, we emperically found that the first PC controls the amount of reverb and the second PC controls the amount of brightness.
Note that adding these PCs together does not necessarily mean that their effects are additive in the final audio.
We found sometimes the effects of least important PCs are more perceptible.
Try to play around with the sliders and buttons and see what you can come up with!
Currently only PCs are tweakable, but in the future we will add more controls and visualisation tools.
For example:
- Directly controlling the parameters of the effects
- Visualising the PCA space
- Visualising the frequency responses/dynamic curves of the effects
"""
SLIDER_MAX = 3
SLIDER_MIN = -3
NUMBER_OF_PCS = 4
TEMPERATURE = 0.7
CONFIG_PATH = "presets/rt_config.yaml"
PCA_PARAM_FILE = "presets/internal/gaussian.npz"
INFO_PATH = "presets/internal/info.json"
MASK_PATH = "presets/internal/feature_mask.npy"
with open(CONFIG_PATH) as fp:
fx_config = yaml.safe_load(fp)["model"]
# Global effect
global_fx = instantiate(fx_config)
global_fx.eval()
pca_params = np.load(PCA_PARAM_FILE)
mean = pca_params["mean"]
cov = pca_params["cov"]
eigvals, eigvecs = np.linalg.eigh(cov)
eigvals = np.flip(eigvals, axis=0)
eigvecs = np.flip(eigvecs, axis=1)
U = eigvecs * np.sqrt(eigvals)
U = torch.from_numpy(U).float()
mean = torch.from_numpy(mean).float()
feature_mask = torch.from_numpy(np.load(MASK_PATH))
# Global latent variable
# z = torch.zeros_like(mean)
with open(INFO_PATH) as f:
info = json.load(f)
param_keys = info["params_keys"]
original_shapes = list(
map(lambda lst: lst if len(lst) else [1], info["params_original_shapes"])
)
*vec2dict_args, _ = get_chunks(param_keys, original_shapes)
vec2dict_args = [param_keys, original_shapes] + vec2dict_args
vec2dict = partial(
vec2statedict,
**dict(
zip(
[
"keys",
"original_shapes",
"selected_chunks",
"position",
"U_matrix_shape",
],
vec2dict_args,
)
),
)
global_fx.load_state_dict(vec2dict(mean), strict=False)
meter = pyln.Meter(44100)
@torch.no_grad()
def z2x(z):
# close all figures to avoid too many open figures
plt.close("all")
x = U @ z + mean
# # print(z)
# fx.load_state_dict(vec2dict(x), strict=False)
# fx.apply(partial(clip_delay_eq_Q, Q=0.707))
return x
@torch.no_grad()
def fx2x(fx):
plt.close("all")
state_dict = fx.state_dict()
flattened = torch.cat([state_dict[k].flatten() for k in param_keys])
x = flattened[feature_mask]
return x
@torch.no_grad()
def x2z(x):
z = U.T @ (x - mean)
return z
@torch.no_grad()
def inference(audio, fx):
sr, y = audio
if sr != 44100:
y = resample(y, sr, 44100)
if y.dtype.kind != "f":
y = y / 32768.0
if y.ndim == 1:
y = y[:, None]
loudness = meter.integrated_loudness(y)
y = pyln.normalize.loudness(y, loudness, -18.0)
y = torch.from_numpy(y).float().T.unsqueeze(0)
if y.shape[1] != 1:
y = y.mean(dim=1, keepdim=True)
direct, wet = fx(y)
direct = direct.squeeze(0).T.numpy()
wet = wet.squeeze(0).T.numpy()
rendered = direct + wet
# rendered = fx(y).squeeze(0).T.numpy()
if np.max(np.abs(rendered)) > 1:
scaler = np.max(np.abs(rendered))
rendered = rendered / scaler
direct = direct / scaler
wet = wet / scaler
return (
(44100, (rendered * 32768).astype(np.int16)),
(44100, (direct * 32768).astype(np.int16)),
(
44100,
(wet * 32768).astype(np.int16),
),
)
def get_important_pcs(n=10, **kwargs):
sliders = [
gr.Slider(minimum=SLIDER_MIN, maximum=SLIDER_MAX, label=f"PC {i}", **kwargs)
for i in range(1, n + 1)
]
return sliders
def model2json(fx):
fx_names = ["PK1", "PK2", "LS", "HS", "LP", "HP", "DRC"]
results = {k: v.toJSON() for k, v in zip(fx_names, fx)} | {
"Panner": fx[7].pan.toJSON()
}
spatial_fx = {
"DLY": fx[7].effects[0].toJSON() | {"LP": fx[7].effects[0].eq.toJSON()},
"FDN": fx[7].effects[1].toJSON()
| {
"Tone correction PEQ": {
k: v.toJSON() for k, v in zip(fx_names[:4], fx[7].effects[1].eq)
}
},
"Cross Send (dB)": fx[7].params.sends_0.log10().mul(20).item(),
}
return {
"Direct": results,
"Sends": spatial_fx,
}
@torch.no_grad()
def plot_eq(fx):
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
w, eq_log_mags = get_log_mags_from_eq(fx[:6])
ax.plot(w, sum(eq_log_mags), color="black", linestyle="-")
for i, eq_log_mag in enumerate(eq_log_mags):
ax.plot(w, eq_log_mag, "k-", alpha=0.3)
ax.fill_between(w, eq_log_mag, 0, facecolor="gray", edgecolor="none", alpha=0.1)
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Magnitude (dB)")
ax.set_xlim(20, 20000)
ax.set_ylim(-40, 20)
ax.set_xscale("log")
ax.grid()
return fig
@torch.no_grad()
def plot_comp(fx):
fig, ax = plt.subplots(figsize=(6, 5), constrained_layout=True)
comp = fx[6]
cmp_th = comp.params.cmp_th.item()
exp_th = comp.params.exp_th.item()
cmp_ratio = comp.params.cmp_ratio.item()
exp_ratio = comp.params.exp_ratio.item()
make_up = comp.params.make_up.item()
# print(cmp_ratio, cmp_th, exp_ratio, exp_th, make_up)
comp_in = np.linspace(-80, 0, 100)
comp_curve = np.where(
comp_in > cmp_th,
comp_in - (comp_in - cmp_th) * (cmp_ratio - 1) / cmp_ratio,
comp_in,
)
comp_out = (
np.where(
comp_curve < exp_th,
comp_curve - (exp_th - comp_curve) / exp_ratio,
comp_curve,
)
+ make_up
)
ax.plot(comp_in, comp_out, c="black", linestyle="-")
ax.plot(comp_in, comp_in, c="r", alpha=0.5)
ax.set_xlabel("Input Level (dB)")
ax.set_ylabel("Output Level (dB)")
ax.set_xlim(-80, 0)
ax.set_ylim(-80, 0)
ax.grid()
return fig
@torch.no_grad()
def plot_delay(fx):
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
delay = fx[7].effects[0]
w, eq_log_mags = get_log_mags_from_eq([delay.eq])
log_gain = delay.params.gain.log10().item() * 20
d = delay.params.delay.item() / 1000
log_mag = sum(eq_log_mags)
ax.plot(w, log_mag + log_gain, color="black", linestyle="-")
log_feedback = delay.params.feedback.log10().item() * 20
for i in range(1, 10):
feedback_log_mag = log_mag * (i + 1) + log_feedback * i + log_gain
ax.plot(
w,
feedback_log_mag,
c="black",
alpha=max(0, (10 - i * d * 4) / 10),
linestyle="-",
)
ax.set_xscale("log")
ax.set_xlim(20, 20000)
ax.set_ylim(-80, 0)
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Magnitude (dB)")
ax.grid()
return fig
@torch.no_grad()
def plot_reverb(fx):
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
fdn = fx[7].effects[1]
w, eq_log_mags = get_log_mags_from_eq(fdn.eq)
bc = fdn.params.c.norm() * fdn.params.b.norm()
log_bc = torch.log10(bc).item() * 20
eq_log_mags = [x + log_bc / len(eq_log_mags) for x in eq_log_mags]
ax.plot(w, sum(eq_log_mags), color="black", linestyle="-")
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("Magnitude (dB)")
ax.set_xlim(20, 20000)
ax.set_ylim(-40, 6)
ax.set_xscale("log")
ax.grid()
return fig
@torch.no_grad()
def plot_t60(fx):
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True)
fdn = fx[7].effects[1]
gamma = fdn.params.gamma.squeeze().numpy()
delays = fdn.delays.numpy()
w = np.linspace(0, 22050, gamma.size)
t60 = -60 / (20 * np.log10(gamma + 1e-10) / np.min(delays)) / 44100
ax.plot(w, t60, color="black", linestyle="-")
ax.set_xlabel("Frequency (Hz)")
ax.set_ylabel("T60 (s)")
ax.set_xlim(20, 20000)
ax.set_ylim(0, 9)
ax.set_xscale("log")
ax.grid()
return fig
@torch.no_grad()
def update_param(m, attr_name, value):
match type(getattr(m, attr_name)):
case torch.nn.Parameter:
getattr(m, attr_name).data.copy_(value)
case _:
setattr(m, attr_name, torch.tensor(value))
@torch.no_grad()
def update_atrt(comp, attr_name, value):
setattr(comp, attr_name, ms2coef(torch.tensor(value), 44100))
def vec2fx(x):
fx = deepcopy(global_fx)
fx.load_state_dict(vec2dict(x), strict=False)
fx.apply(partial(clip_delay_eq_Q, Q=0.707))
return fx
get_last_attribute = lambda m, attr_name: (
(m, attr_name)
if "." not in attr_name
else (lambda x, *remain: get_last_attribute(getattr(m, x), ".".join(remain)))(
*attr_name.split(".")
)
)
with gr.Blocks() as demo:
z = gr.State(torch.zeros_like(mean))
fx_params = gr.State(mean)
fx = vec2fx(fx_params.value)
default_pc_slider = partial(
gr.Slider, minimum=SLIDER_MIN, maximum=SLIDER_MAX, interactive=True, value=0
)
default_audio_block = partial(gr.Audio, type="numpy", loop=True)
default_freq_slider = partial(gr.Slider, label="Frequency (Hz)", interactive=True)
default_gain_slider = partial(gr.Slider, label="Gain (dB)", interactive=True)
default_q_slider = partial(gr.Slider, label="Q", interactive=True)
gr.Markdown(
title_md,
elem_id="title",
)
with gr.Row():
gr.Markdown(
description_md,
elem_id="description",
)
gr.Image("diffvox_diagram.png", elem_id="diagram")
with gr.Row():
with gr.Column():
audio_input = default_audio_block(sources="upload", label="Input Audio")
with gr.Row():
random_button = gr.Button(
f"Randomise PCs",
elem_id="randomise-button",
)
reset_button = gr.Button(
"Reset",
elem_id="reset-button",
)
render_button = gr.Button(
"Run", elem_id="render-button", variant="primary"
)
with gr.Row():
s1 = default_pc_slider(label="PC 1")
s2 = default_pc_slider(label="PC 2")
with gr.Row():
s3 = default_pc_slider(label="PC 3")
s4 = default_pc_slider(label="PC 4")
sliders = [s1, s2, s3, s4]
extra_pc_dropdown = gr.Dropdown(
list(range(NUMBER_OF_PCS + 1, mean.numel() + 1)),
label=f"PC > {NUMBER_OF_PCS}",
info="Select which extra PC to adjust",
interactive=True,
)
extra_slider = default_pc_slider(label="Extra PC")
with gr.Column():
audio_output = default_audio_block(label="Output Audio", interactive=False)
direct_output = default_audio_block(label="Direct Audio", interactive=False)
wet_output = default_audio_block(label="Wet Audio", interactive=False)
_ = gr.Markdown("## Parametric EQ")
peq_plot = gr.Plot(plot_eq(fx), label="PEQ Frequency Response", elem_id="peq-plot")
with gr.Row():
with gr.Column(min_width=160):
_ = gr.Markdown("High Pass")
hp = fx[5]
hp_freq = default_freq_slider(
minimum=16, maximum=5300, value=hp.params.freq.item()
)
hp_q = default_q_slider(minimum=0.5, maximum=10, value=hp.params.Q.item())
with gr.Column(min_width=160):
_ = gr.Markdown("Low Shelf")
ls = fx[2]
ls_freq = default_freq_slider(
minimum=30, maximum=200, value=ls.params.freq.item()
)
ls_gain = default_gain_slider(
minimum=-12, maximum=12, value=ls.params.gain.item()
)
with gr.Column(min_width=160):
_ = gr.Markdown("Peak filter 1")
pk1 = fx[0]
pk1_freq = default_freq_slider(
minimum=33, maximum=5400, value=pk1.params.freq.item()
)
pk1_gain = default_gain_slider(
minimum=-12, maximum=12, value=pk1.params.gain.item()
)
pk1_q = default_q_slider(minimum=0.2, maximum=20, value=pk1.params.Q.item())
with gr.Column(min_width=160):
_ = gr.Markdown("Peak filter 2")
pk2 = fx[1]
pk2_freq = default_freq_slider(
minimum=200, maximum=17500, value=pk2.params.freq.item()
)
pk2_gain = default_gain_slider(
minimum=-12, maximum=12, value=pk2.params.gain.item()
)
pk2_q = default_q_slider(minimum=0.2, maximum=20, value=pk2.params.Q.item())
with gr.Column(min_width=160):
_ = gr.Markdown("High Shelf")
hs = fx[3]
hs_freq = default_freq_slider(
minimum=750, maximum=8300, value=hs.params.freq.item()
)
hs_gain = default_gain_slider(
minimum=-12, maximum=12, value=hs.params.gain.item()
)
with gr.Column(min_width=160):
_ = gr.Markdown("Low Pass")
lp = fx[4]
lp_freq = default_freq_slider(
minimum=200, maximum=18000, value=lp.params.freq.item()
)
lp_q = default_q_slider(minimum=0.5, maximum=10, value=lp.params.Q.item())
_ = gr.Markdown("## Compressor and Expander")
with gr.Row():
with gr.Column():
comp = fx[6]
cmp_th = gr.Slider(
minimum=-60,
maximum=0,
value=comp.params.cmp_th.item(),
interactive=True,
label="Threshold (dB)",
)
cmp_ratio = gr.Slider(
minimum=1,
maximum=20,
value=comp.params.cmp_ratio.item(),
interactive=True,
label="Comp. Ratio",
)
make_up = gr.Slider(
minimum=-12,
maximum=12,
value=comp.params.make_up.item(),
interactive=True,
label="Make Up (dB)",
)
attack_time = gr.Slider(
minimum=0.1,
maximum=100,
value=coef2ms(comp.params.at, 44100).item(),
interactive=True,
label="Attack Time (ms)",
)
release_time = gr.Slider(
minimum=50,
maximum=1000,
value=coef2ms(comp.params.rt, 44100).item(),
interactive=True,
label="Release Time (ms)",
)
exp_ratio = gr.Slider(
minimum=0,
maximum=1,
value=comp.params.exp_ratio.item(),
interactive=True,
label="Exp. Ratio",
)
exp_th = gr.Slider(
minimum=-80,
maximum=0,
value=comp.params.exp_th.item(),
interactive=True,
label="Exp. Threshold (dB)",
)
avg_coef = gr.Slider(
minimum=0,
maximum=1,
value=comp.params.avg_coef.item(),
interactive=True,
label="RMS Averaging Coefficient",
)
with gr.Column():
comp_plot = gr.Plot(
plot_comp(fx), label="Compressor Curve", elem_id="comp-plot"
)
_ = gr.Markdown("## Ping-Pong Delay")
with gr.Row():
with gr.Column():
delay = fx[7].effects[0]
delay_time = gr.Slider(
minimum=100,
maximum=1000,
value=delay.params.delay.item(),
interactive=True,
label="Delay Time (ms)",
)
feedback = gr.Slider(
minimum=0,
maximum=1,
value=delay.params.feedback.item(),
interactive=True,
label="Feedback",
)
delay_gain = gr.Slider(
minimum=-80,
maximum=0,
value=delay.params.gain.log10().item() * 20,
interactive=True,
label="Gain (dB)",
)
odd_pan = gr.Slider(
minimum=-100,
maximum=100,
value=delay.odd_pan.params.pan.item() * 200 - 100,
interactive=True,
label="Odd Delay Pan",
)
even_pan = gr.Slider(
minimum=-100,
maximum=100,
value=delay.even_pan.params.pan.item() * 200 - 100,
interactive=True,
label="Even Delay Pan",
)
delay_lp_freq = gr.Slider(
minimum=200,
maximum=16000,
value=delay.eq.params.freq.item(),
interactive=True,
label="Low Pass Frequency (Hz)",
)
with gr.Column():
delay_plot = gr.Plot(
plot_delay(fx), label="Delay Frequency Response", elem_id="delay-plot"
)
with gr.Row():
reverb_plot = gr.Plot(
plot_reverb(fx),
label="Reverb Tone Correction PEQ",
elem_id="reverb-plot",
min_width=160,
)
t60_plot = gr.Plot(
plot_t60(fx), label="Reverb T60", elem_id="t60-plot", min_width=160
)
with gr.Row():
json_output = gr.JSON(
model2json(fx), label="Effect Settings", max_height=800, open=True
)
update_pc = lambda z, i: z[:NUMBER_OF_PCS].tolist() + [z[i - 1].item()]
update_pc_outputs = sliders + [extra_slider]
peq_sliders = [
pk1_freq,
pk1_gain,
pk1_q,
pk2_freq,
pk2_gain,
pk2_q,
ls_freq,
ls_gain,
hs_freq,
hs_gain,
lp_freq,
lp_q,
hp_freq,
hp_q,
]
peq_attr_names = (
["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2 + ["freq", "Q"] * 2
)
peq_indices = [0] * 3 + [1] * 3 + [2] * 2 + [3] * 2 + [4] * 2 + [5] * 2
cmp_sliders = [
cmp_th,
cmp_ratio,
make_up,
exp_ratio,
exp_th,
avg_coef,
attack_time,
release_time,
]
cmp_update_funcs = [update_param] * 6 + [update_atrt] * 2
cmp_attr_names = [
"cmp_th",
"cmp_ratio",
"make_up",
"exp_ratio",
"exp_th",
"avg_coef",
"at",
"rt",
]
cmp_update_plot_flag = [True] * 5 + [False] * 3
delay_sliders = [delay_time, feedback, delay_lp_freq, delay_gain, odd_pan, even_pan]
delay_update_funcs = (
[update_param] * 3
+ [lambda m, a, v: update_param(m, a, 10 ** (v / 20))]
+ [lambda m, a, v: update_param(m, a, (v + 100) / 200)] * 2
)
delay_attr_names = [
"params.delay",
"params.feedback",
"eq.params.freq",
"params.gain",
"odd_pan.params.pan",
"even_pan.params.pan",
]
delay_update_plot_flag = [True] * 4 + [False] * 2
all_effect_sliders = peq_sliders + cmp_sliders + delay_sliders
split_sizes = [len(peq_sliders), len(cmp_sliders), len(delay_sliders)]
def assign_fx_params(fx, *args):
peq_sliders, cmp_sliders, delay_sliders = (
args[: split_sizes[0]],
args[split_sizes[0] : sum(split_sizes[:2])],
args[sum(split_sizes[:2]) :],
)
for idx, s, attr_name in zip(peq_indices, peq_sliders, peq_attr_names):
update_param(fx[idx].params, attr_name, s)
for f, s, attr_name in zip(cmp_update_funcs, cmp_sliders, cmp_attr_names):
f(fx[6].params, attr_name, s)
for f, s, attr_name in zip(delay_update_funcs, delay_sliders, delay_attr_names):
m, name = get_last_attribute(fx[7].effects[0], attr_name)
f(m, name, s)
return fx
for idx, s, attr_name in zip(peq_indices, peq_sliders, peq_attr_names):
s.input(
chain_functions(
lambda x, s, extra_pc_idx, *all_s: (
assign_fx_params(vec2fx(x), *all_s),
s,
extra_pc_idx,
),
lambda fx, s, extra_pc_idx, idx=idx, attr_name=attr_name: (
update_param(fx[idx].params, attr_name, s),
fx,
extra_pc_idx,
),
lambda _, fx, extra_pc_idx: (fx2x(fx), fx, extra_pc_idx),
lambda x, fx, extra_pc_idx: (x2z(x), x, fx, extra_pc_idx),
lambda z, x, fx, extra_pc_idx: [z, x]
+ [model2json(fx), plot_eq(fx)]
+ update_pc(z, extra_pc_idx),
),
inputs=[fx_params, s, extra_pc_dropdown] + all_effect_sliders,
outputs=[z, fx_params, json_output, peq_plot] + update_pc_outputs,
)
for f, s, attr_name, update_plot in zip(
cmp_update_funcs, cmp_sliders, cmp_attr_names, cmp_update_plot_flag
):
s.input(
chain_functions(
lambda x, s, e_pc_i, *all_s: (
assign_fx_params(vec2fx(x), *all_s),
s,
e_pc_i,
),
lambda fx, s, e_pc_i, attr_name=attr_name, f=f: (
f(fx[6].params, attr_name, s),
fx,
e_pc_i,
),
lambda _, fx, e_pc_i: (fx2x(fx), fx, e_pc_i),
lambda x, fx, e_pc_i: (x2z(x), x, fx, e_pc_i),
lambda z, x, fx, e_pc_i, update_plot=update_plot: [z, x]
+ [model2json(fx)]
+ ([plot_comp(fx)] if update_plot else [])
+ update_pc(z, e_pc_i),
),
inputs=[fx_params, s, extra_pc_dropdown] + all_effect_sliders,
outputs=[z, fx_params, json_output]
+ ([comp_plot] if update_plot else [])
+ update_pc_outputs,
)
for f, s, attr_name, update_plot in zip(
delay_update_funcs, delay_sliders, delay_attr_names, delay_update_plot_flag
):
s.input(
chain_functions(
lambda x, s, e_pc_i, *all_s: (
assign_fx_params(vec2fx(x), *all_s),
s,
e_pc_i,
),
lambda fx, s, e_pc_i, f=f, attr_name=attr_name: (
f(*get_last_attribute(fx[7].effects[0], attr_name), s),
fx,
e_pc_i,
),
lambda _, fx, e_pc_i: (fx2x(fx), fx, e_pc_i),
lambda x, fx, e_pc_i: (x2z(x), x, fx, e_pc_i),
lambda z, x, fx, e_pc_i, update_plot=update_plot: (
[z, x]
+ [model2json(fx)]
+ ([plot_delay(fx)] if update_plot else [])
+ update_pc(z, e_pc_i)
),
),
inputs=[fx_params, s, extra_pc_dropdown] + all_effect_sliders,
outputs=[z, fx_params]
+ [json_output]
+ ([delay_plot] if update_plot else [])
+ update_pc_outputs,
)
render_button.click(
chain_functions(
lambda audio, x, *all_s: (audio, assign_fx_params(vec2fx(x), *all_s)),
inference,
),
inputs=[
audio_input,
fx_params,
]
+ all_effect_sliders,
outputs=[
audio_output,
direct_output,
wet_output,
],
)
update_fx = lambda fx: [
fx[0].params.freq.item(),
fx[0].params.gain.item(),
fx[0].params.Q.item(),
fx[1].params.freq.item(),
fx[1].params.gain.item(),
fx[1].params.Q.item(),
fx[2].params.freq.item(),
fx[2].params.gain.item(),
fx[3].params.freq.item(),
fx[3].params.gain.item(),
fx[4].params.freq.item(),
fx[4].params.Q.item(),
fx[5].params.freq.item(),
fx[5].params.Q.item(),
fx[6].params.cmp_th.item(),
fx[6].params.cmp_ratio.item(),
fx[6].params.make_up.item(),
fx[6].params.exp_th.item(),
fx[6].params.exp_ratio.item(),
coef2ms(fx[6].params.at, 44100).item(),
coef2ms(fx[6].params.rt, 44100).item(),
fx[7].effects[0].params.delay.item(),
fx[7].effects[0].params.feedback.item(),
fx[7].effects[0].params.gain.log10().item() * 20,
fx[7].effects[0].eq.params.freq.item(),
fx[7].effects[0].odd_pan.params.pan.item() * 200 - 100,
fx[7].effects[0].even_pan.params.pan.item() * 200 - 100,
]
update_fx_outputs = [
pk1_freq,
pk1_gain,
pk1_q,
pk2_freq,
pk2_gain,
pk2_q,
ls_freq,
ls_gain,
hs_freq,
hs_gain,
lp_freq,
lp_q,
hp_freq,
hp_q,
cmp_th,
cmp_ratio,
make_up,
exp_th,
exp_ratio,
attack_time,
release_time,
delay_time,
feedback,
delay_gain,
delay_lp_freq,
odd_pan,
even_pan,
]
update_plots = lambda fx: [
plot_eq(fx),
plot_comp(fx),
plot_delay(fx),
plot_reverb(fx),
plot_t60(fx),
]
update_plots_outputs = [
peq_plot,
comp_plot,
delay_plot,
reverb_plot,
t60_plot,
]
update_all = lambda z, fx, i: update_pc(z, i) + update_fx(fx) + update_plots(fx)
update_all_outputs = update_pc_outputs + update_fx_outputs + update_plots_outputs
random_button.click(
chain_functions(
lambda i: (torch.randn_like(mean).clip(SLIDER_MIN, SLIDER_MAX), i),
lambda z, i: (z, z2x(z), i),
lambda z, x, i: (z, x, vec2fx(x), i),
lambda z, x, fx, i: [z, x] + update_all(z, fx, i),
),
inputs=extra_pc_dropdown,
outputs=[z, fx_params] + update_all_outputs,
)
reset_button.click(
chain_functions(
lambda: torch.zeros_like(mean),
lambda z: (z, z2x(z)),
lambda z, x: (z, x, vec2fx(x)),
lambda z, x, fx: [z, x] + update_all(z, fx, NUMBER_OF_PCS),
),
outputs=[z, fx_params] + update_all_outputs,
)
def update_z(z, s, i):
z[i] = s
return z
for i, slider in enumerate(sliders):
slider.input(
chain_functions(
lambda z, s, i=i: update_z(z, s, i),
lambda z: (z, z2x(z)),
lambda z, x: (z, x, vec2fx(x)),
lambda z, x, fx: [z, x, model2json(fx)]
+ update_fx(fx)
+ update_plots(fx),
),
inputs=[z, slider],
outputs=[z, fx_params, json_output]
+ update_fx_outputs
+ update_plots_outputs,
)
extra_slider.input(
chain_functions(
lambda z, s, i: update_z(z, s, i - 1),
lambda z: (z, z2x(z)),
lambda z, x: (z, x, vec2fx(x)),
lambda z, x, fx: [z, x, model2json(fx)] + update_fx(fx) + update_plots(fx),
),
inputs=[z, extra_slider, extra_pc_dropdown],
outputs=[z, fx_params, json_output] + update_fx_outputs + update_plots_outputs,
)
extra_pc_dropdown.input(
lambda z, i: z[i - 1].item(),
inputs=[z, extra_pc_dropdown],
outputs=extra_slider,
)
demo.launch()