Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from scipy.io.wavfile import read | |
import matplotlib.pyplot as plt | |
import torch | |
import math | |
import yaml | |
import json | |
import pyloudnorm as pyln | |
from hydra.utils import instantiate | |
from soxr import resample | |
from functools import partial, reduce | |
from itertools import accumulate | |
from torchcomp import coef2ms, ms2coef | |
from copy import deepcopy | |
from modules.utils import vec2statedict, get_chunks | |
from modules.fx import clip_delay_eq_Q | |
from plot_utils import get_log_mags_from_eq | |
def chain_functions(*functions): | |
return lambda *initial_args: reduce( | |
lambda xs, f: f(*xs) if isinstance(xs, tuple) else f(xs), | |
functions, | |
initial_args, | |
) | |
title_md = "# Vocal Effects Generator" | |
description_md = """ | |
This is a demo of the paper [DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions](https://arxiv.org/abs/2504.14735), accepted at DAFx 2025. | |
In this demo, you can upload a raw vocal audio file (in mono) and use our model to apply professional-quality vocal processing by tweaking generated effects settings to enhance your vocals! | |
The effects consist of series of EQ, compressor, delay, and reverb. | |
The generator is a PCA model derived from 365 vocal effects presets fitted with the same effects chain. | |
This interface allows you to control the principal components (PCs) of the generator, randomise them, and render the audio. | |
To give you some idea, we empirically found that the first PC controls the amount of reverb and the second PC controls the amount of brightness. | |
Note that adding these PCs together does not necessarily mean that their effects are additive in the final audio. | |
We found sometimes the effects of least important PCs are more perceptible. | |
Try to play around with the sliders and buttons and see what you can come up with! | |
> **_Note:_** To upload your own audio, click X on the top right corner of the input audio block. | |
""" | |
SLIDER_MAX = 3 | |
SLIDER_MIN = -3 | |
NUMBER_OF_PCS = 4 | |
TEMPERATURE = 0.7 | |
CONFIG_PATH = "presets/rt_config.yaml" | |
PCA_PARAM_FILE = "presets/internal/gaussian.npz" | |
INFO_PATH = "presets/internal/info.json" | |
MASK_PATH = "presets/internal/feature_mask.npy" | |
PRESET_PATH = "presets/internal/raw_params.npy" | |
TRAIN_INDEX_PATH = "presets/internal/train_index.npy" | |
EXAMPLE_PATH = "eleanor_erased.wav" | |
with open(CONFIG_PATH) as fp: | |
fx_config = yaml.safe_load(fp)["model"] | |
# Global effect | |
global_fx = instantiate(fx_config) | |
global_fx.eval() | |
raw_params = torch.from_numpy(np.load(PRESET_PATH)) | |
train_index = torch.from_numpy(np.load(TRAIN_INDEX_PATH)) | |
feature_mask = torch.from_numpy(np.load(MASK_PATH)) | |
presets = raw_params[train_index][:, feature_mask].contiguous() | |
pca_params = np.load(PCA_PARAM_FILE) | |
mean = pca_params["mean"] | |
cov = pca_params["cov"] | |
eigvals, eigvecs = np.linalg.eigh(cov) | |
eigvals = np.flip(eigvals, axis=0) | |
eigvecs = np.flip(eigvecs, axis=1) | |
eigsqrt = torch.from_numpy(eigvals.copy()).float().sqrt() | |
U = torch.from_numpy(eigvecs.copy()).float() | |
mean = torch.from_numpy(mean).float() | |
# Global latent variable | |
# z = torch.zeros_like(mean) | |
with open(INFO_PATH) as f: | |
info = json.load(f) | |
param_keys = info["params_keys"] | |
original_shapes = list( | |
map(lambda lst: lst if len(lst) else [1], info["params_original_shapes"]) | |
) | |
*vec2dict_args, _ = get_chunks(param_keys, original_shapes) | |
vec2dict_args = [param_keys, original_shapes] + vec2dict_args | |
vec2dict = partial( | |
vec2statedict, | |
**dict( | |
zip( | |
[ | |
"keys", | |
"original_shapes", | |
"selected_chunks", | |
"position", | |
"U_matrix_shape", | |
], | |
vec2dict_args, | |
) | |
), | |
) | |
global_fx.load_state_dict(vec2dict(mean), strict=False) | |
meter = pyln.Meter(44100) | |
def z2x(z): | |
# close all figures to avoid too many open figures | |
plt.close("all") | |
x = U @ (z * eigsqrt) + mean | |
# # print(z) | |
# fx.load_state_dict(vec2dict(x), strict=False) | |
# fx.apply(partial(clip_delay_eq_Q, Q=0.707)) | |
return x | |
def fx2x(fx): | |
plt.close("all") | |
state_dict = fx.state_dict() | |
flattened = torch.cat([state_dict[k].flatten() for k in param_keys]) | |
x = flattened[feature_mask] | |
return x | |
def x2z(x): | |
z = U.T @ (x - mean) | |
return z / eigsqrt | |
def inference(audio, ratio, fx): | |
sr, y = audio | |
if sr != 44100: | |
y = resample(y, sr, 44100) | |
if y.dtype.kind != "f": | |
y = y / 32768.0 | |
if y.ndim == 1: | |
y = y[:, None] | |
loudness = meter.integrated_loudness(y) | |
y = pyln.normalize.loudness(y, loudness, -18.0) | |
y = torch.from_numpy(y).float().T.unsqueeze(0) | |
if y.shape[1] != 1: | |
y = y.mean(dim=1, keepdim=True) | |
direct, wet = fx(y) | |
direct = direct.squeeze(0).T.numpy() | |
wet = wet.squeeze(0).T.numpy() | |
angle = ratio * math.pi * 0.5 | |
test_clipping = direct + wet | |
# rendered = fx(y).squeeze(0).T.numpy() | |
if np.max(np.abs(test_clipping)) > 1: | |
scaler = np.max(np.abs(test_clipping)) | |
# rendered = rendered / scaler | |
direct = direct / scaler | |
wet = wet / scaler | |
rendered = math.sqrt(2) * (math.cos(angle) * direct + math.sin(angle) * wet) | |
return ( | |
(44100, (rendered * 32768).astype(np.int16)), | |
(44100, (direct * 32768).astype(np.int16)), | |
( | |
44100, | |
(wet * 32768).astype(np.int16), | |
), | |
) | |
def get_important_pcs(n=10, **kwargs): | |
sliders = [ | |
gr.Slider(minimum=SLIDER_MIN, maximum=SLIDER_MAX, label=f"PC {i}", **kwargs) | |
for i in range(1, n + 1) | |
] | |
return sliders | |
def model2json(fx): | |
fx_names = ["PK1", "PK2", "LS", "HS", "LP", "HP", "DRC"] | |
results = {k: v.toJSON() for k, v in zip(fx_names, fx)} | { | |
"Panner": fx[7].pan.toJSON() | |
} | |
spatial_fx = { | |
"DLY": fx[7].effects[0].toJSON() | {"LP": fx[7].effects[0].eq.toJSON()}, | |
"FDN": fx[7].effects[1].toJSON() | |
| { | |
"Tone correction PEQ": { | |
k: v.toJSON() for k, v in zip(fx_names[:4], fx[7].effects[1].eq) | |
} | |
}, | |
"Cross Send (dB)": fx[7].params.sends_0.log10().mul(20).item(), | |
} | |
return { | |
"Direct": results, | |
"Sends": spatial_fx, | |
} | |
def plot_eq(fx): | |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True) | |
w, eq_log_mags = get_log_mags_from_eq(fx[:6]) | |
ax.plot(w, sum(eq_log_mags), color="black", linestyle="-") | |
for i, eq_log_mag in enumerate(eq_log_mags): | |
ax.plot(w, eq_log_mag, "k-", alpha=0.3) | |
ax.fill_between(w, eq_log_mag, 0, facecolor="gray", edgecolor="none", alpha=0.1) | |
ax.set_xlabel("Frequency (Hz)") | |
ax.set_ylabel("Magnitude (dB)") | |
ax.set_xlim(20, 20000) | |
ax.set_ylim(-40, 20) | |
ax.set_xscale("log") | |
ax.grid() | |
return fig | |
def plot_comp(fx): | |
fig, ax = plt.subplots(figsize=(6, 5), constrained_layout=True) | |
comp = fx[6] | |
cmp_th = comp.params.cmp_th.item() | |
exp_th = comp.params.exp_th.item() | |
cmp_ratio = comp.params.cmp_ratio.item() | |
exp_ratio = comp.params.exp_ratio.item() | |
make_up = comp.params.make_up.item() | |
# print(cmp_ratio, cmp_th, exp_ratio, exp_th, make_up) | |
comp_in = np.linspace(-80, 0, 100) | |
comp_curve = np.where( | |
comp_in > cmp_th, | |
comp_in - (comp_in - cmp_th) * (cmp_ratio - 1) / cmp_ratio, | |
comp_in, | |
) | |
comp_out = ( | |
np.where( | |
comp_curve < exp_th, | |
comp_curve - (exp_th - comp_curve) / exp_ratio, | |
comp_curve, | |
) | |
+ make_up | |
) | |
ax.plot(comp_in, comp_out, c="black", linestyle="-") | |
ax.plot(comp_in, comp_in, c="r", alpha=0.5) | |
ax.set_xlabel("Input Level (dB)") | |
ax.set_ylabel("Output Level (dB)") | |
ax.set_xlim(-80, 0) | |
ax.set_ylim(-80, 0) | |
ax.grid() | |
return fig | |
def plot_delay(fx): | |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True) | |
delay = fx[7].effects[0] | |
w, eq_log_mags = get_log_mags_from_eq([delay.eq]) | |
log_gain = delay.params.gain.log10().item() * 20 | |
d = delay.params.delay.item() / 1000 | |
log_mag = sum(eq_log_mags) | |
ax.plot(w, log_mag + log_gain, color="black", linestyle="-") | |
log_feedback = delay.params.feedback.log10().item() * 20 | |
for i in range(1, 10): | |
feedback_log_mag = log_mag * (i + 1) + log_feedback * i + log_gain | |
ax.plot( | |
w, | |
feedback_log_mag, | |
c="black", | |
alpha=max(0, (10 - i * d * 4) / 10), | |
linestyle="-", | |
) | |
ax.set_xscale("log") | |
ax.set_xlim(20, 20000) | |
ax.set_ylim(-80, 0) | |
ax.set_xlabel("Frequency (Hz)") | |
ax.set_ylabel("Magnitude (dB)") | |
ax.grid() | |
return fig | |
def plot_reverb(fx): | |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True) | |
fdn = fx[7].effects[1] | |
w, eq_log_mags = get_log_mags_from_eq(fdn.eq) | |
bc = fdn.params.c.norm() * fdn.params.b.norm() | |
log_bc = torch.log10(bc).item() * 20 | |
# eq_log_mags = [x + log_bc / len(eq_log_mags) for x in eq_log_mags] | |
# ax.plot(w, sum(eq_log_mags), color="black", linestyle="-") | |
eq_log_mags = sum(eq_log_mags) + log_bc | |
ax.plot(w, eq_log_mags, color="black", linestyle="-") | |
ax.set_xlabel("Frequency (Hz)") | |
ax.set_ylabel("Magnitude (dB)") | |
ax.set_xlim(20, 20000) | |
ax.set_ylim(-40, 20) | |
ax.set_xscale("log") | |
ax.grid() | |
return fig | |
def plot_t60(fx): | |
fig, ax = plt.subplots(figsize=(6, 4), constrained_layout=True) | |
fdn = fx[7].effects[1] | |
gamma = fdn.params.gamma.squeeze().numpy() | |
delays = fdn.delays.numpy() | |
w = np.linspace(0, 22050, gamma.size) | |
t60 = -60 / (20 * np.log10(gamma + 1e-10) / np.min(delays)) / 44100 | |
ax.plot(w, t60, color="black", linestyle="-") | |
ax.set_xlabel("Frequency (Hz)") | |
ax.set_ylabel("T60 (s)") | |
ax.set_xlim(20, 20000) | |
ax.set_ylim(0, 9) | |
ax.set_xscale("log") | |
ax.grid() | |
return fig | |
def update_param(m, attr_name, value): | |
match type(getattr(m, attr_name)): | |
case torch.nn.Parameter: | |
getattr(m, attr_name).data.copy_(value) | |
case _: | |
if getattr(m, attr_name).ndim == 0: | |
setattr(m, attr_name, torch.tensor(value)) | |
else: | |
setattr(m, attr_name, torch.tensor([value])) | |
def update_atrt(comp, attr_name, value): | |
setattr(comp, attr_name, ms2coef(torch.tensor(value), 44100)) | |
def vec2fx(x): | |
fx = deepcopy(global_fx) | |
fx.load_state_dict(vec2dict(x), strict=False) | |
fx.apply(partial(clip_delay_eq_Q, Q=0.707)) | |
return fx | |
get_last_attribute = lambda m, attr_name: ( | |
(m, attr_name) | |
if "." not in attr_name | |
else (lambda x, *remain: get_last_attribute(getattr(m, x), ".".join(remain)))( | |
*attr_name.split(".") | |
) | |
) | |
with gr.Blocks() as demo: | |
z = gr.State(torch.zeros_like(mean)) | |
fx_params = gr.State(mean) | |
fx = vec2fx(fx_params.value) | |
sr, y = read(EXAMPLE_PATH) | |
default_pc_slider = partial( | |
gr.Slider, minimum=SLIDER_MIN, maximum=SLIDER_MAX, interactive=True, value=0 | |
) | |
default_audio_block = partial(gr.Audio, type="numpy", loop=True) | |
default_freq_slider = partial(gr.Slider, label="Frequency (Hz)", interactive=True) | |
default_gain_slider = partial(gr.Slider, label="Gain (dB)", interactive=True) | |
default_q_slider = partial(gr.Slider, label="Q", interactive=True) | |
gr.Markdown( | |
title_md, | |
elem_id="title", | |
) | |
with gr.Row(): | |
gr.Markdown( | |
description_md, | |
elem_id="description", | |
) | |
gr.Image("diffvox_diagram.png", elem_id="diagram") | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = default_audio_block( | |
sources="upload", label="Input Audio", value=(sr, y) | |
) | |
with gr.Row(): | |
random_button = gr.Button( | |
f"Randomise PCs", | |
elem_id="randomise-button", | |
) | |
reset_button = gr.Button( | |
"Reset", | |
elem_id="reset-button", | |
) | |
render_button = gr.Button( | |
"Run", elem_id="render-button", variant="primary" | |
) | |
with gr.Row(): | |
s1 = default_pc_slider(label="PC 1") | |
s2 = default_pc_slider(label="PC 2") | |
with gr.Row(): | |
s3 = default_pc_slider(label="PC 3") | |
s4 = default_pc_slider(label="PC 4") | |
sliders = [s1, s2, s3, s4] | |
with gr.Row(): | |
with gr.Column(): | |
extra_pc_dropdown = gr.Dropdown( | |
list(range(NUMBER_OF_PCS + 1, mean.numel() + 1)), | |
label=f"PC > {NUMBER_OF_PCS}", | |
info="Select which extra PC to adjust", | |
interactive=True, | |
) | |
extra_slider = default_pc_slider(label="Extra PC") | |
preset_dropdown = gr.Dropdown( | |
["none"] + list(range(1, presets.shape[0] + 1)), | |
value="none", | |
label=f"Select Preset (1-{presets.shape[0]})", | |
info="Select a preset to load (this will override the current settings)", | |
interactive=True, | |
) | |
with gr.Column(): | |
audio_output = default_audio_block(label="Output Audio", interactive=False) | |
dry_wet_ratio = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.5, | |
label="Dry/Wet Ratio", | |
interactive=True, | |
) | |
direct_output = default_audio_block(label="Direct Audio", interactive=False) | |
wet_output = default_audio_block(label="Wet Audio", interactive=False) | |
_ = gr.Markdown("## Parametric EQ") | |
peq_plot = gr.Plot(plot_eq(fx), label="PEQ Frequency Response", elem_id="peq-plot") | |
with gr.Row(): | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("High Pass") | |
hp = fx[5] | |
hp_freq = default_freq_slider( | |
minimum=16, maximum=5300, value=hp.params.freq.item() | |
) | |
hp_q = default_q_slider(minimum=0.5, maximum=10, value=hp.params.Q.item()) | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("Low Shelf") | |
ls = fx[2] | |
ls_freq = default_freq_slider( | |
minimum=30, maximum=200, value=ls.params.freq.item() | |
) | |
ls_gain = default_gain_slider( | |
minimum=-12, maximum=12, value=ls.params.gain.item() | |
) | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("Peak filter 1") | |
pk1 = fx[0] | |
pk1_freq = default_freq_slider( | |
minimum=33, maximum=5400, value=pk1.params.freq.item() | |
) | |
pk1_gain = default_gain_slider( | |
minimum=-12, maximum=12, value=pk1.params.gain.item() | |
) | |
pk1_q = default_q_slider(minimum=0.2, maximum=20, value=pk1.params.Q.item()) | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("Peak filter 2") | |
pk2 = fx[1] | |
pk2_freq = default_freq_slider( | |
minimum=200, maximum=17500, value=pk2.params.freq.item() | |
) | |
pk2_gain = default_gain_slider( | |
minimum=-12, maximum=12, value=pk2.params.gain.item() | |
) | |
pk2_q = default_q_slider(minimum=0.2, maximum=20, value=pk2.params.Q.item()) | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("High Shelf") | |
hs = fx[3] | |
hs_freq = default_freq_slider( | |
minimum=750, maximum=8300, value=hs.params.freq.item() | |
) | |
hs_gain = default_gain_slider( | |
minimum=-12, maximum=12, value=hs.params.gain.item() | |
) | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("Low Pass") | |
lp = fx[4] | |
lp_freq = default_freq_slider( | |
minimum=200, maximum=18000, value=lp.params.freq.item() | |
) | |
lp_q = default_q_slider(minimum=0.5, maximum=10, value=lp.params.Q.item()) | |
_ = gr.Markdown("## Compressor and Expander") | |
with gr.Row(): | |
with gr.Column(): | |
comp = fx[6] | |
cmp_th = gr.Slider( | |
minimum=-60, | |
maximum=0, | |
value=comp.params.cmp_th.item(), | |
interactive=True, | |
label="Threshold (dB)", | |
) | |
cmp_ratio = gr.Slider( | |
minimum=1, | |
maximum=20, | |
value=comp.params.cmp_ratio.item(), | |
interactive=True, | |
label="Comp. Ratio", | |
) | |
make_up = gr.Slider( | |
minimum=-12, | |
maximum=12, | |
value=comp.params.make_up.item(), | |
interactive=True, | |
label="Make Up (dB)", | |
) | |
attack_time = gr.Slider( | |
minimum=0.1, | |
maximum=100, | |
value=coef2ms(comp.params.at, 44100).item(), | |
interactive=True, | |
label="Attack Time (ms)", | |
) | |
release_time = gr.Slider( | |
minimum=50, | |
maximum=1000, | |
value=coef2ms(comp.params.rt, 44100).item(), | |
interactive=True, | |
label="Release Time (ms)", | |
) | |
exp_ratio = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=comp.params.exp_ratio.item(), | |
interactive=True, | |
label="Exp. Ratio", | |
) | |
exp_th = gr.Slider( | |
minimum=-80, | |
maximum=0, | |
value=comp.params.exp_th.item(), | |
interactive=True, | |
label="Exp. Threshold (dB)", | |
) | |
avg_coef = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=comp.params.avg_coef.item(), | |
interactive=True, | |
label="RMS Averaging Coefficient", | |
) | |
with gr.Column(): | |
comp_plot = gr.Plot( | |
plot_comp(fx), label="Compressor Curve", elem_id="comp-plot" | |
) | |
_ = gr.Markdown("## Ping-Pong Delay") | |
with gr.Row(): | |
with gr.Column(): | |
delay = fx[7].effects[0] | |
delay_time = gr.Slider( | |
minimum=100, | |
maximum=1000, | |
value=delay.params.delay.item(), | |
interactive=True, | |
label="Delay Time (ms)", | |
) | |
feedback = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=delay.params.feedback.item(), | |
interactive=True, | |
label="Feedback", | |
) | |
delay_gain = gr.Slider( | |
minimum=-80, | |
maximum=0, | |
value=delay.params.gain.log10().item() * 20, | |
interactive=True, | |
label="Gain (dB)", | |
) | |
odd_pan = gr.Slider( | |
minimum=-100, | |
maximum=100, | |
value=delay.odd_pan.params.pan.item() * 200 - 100, | |
interactive=True, | |
label="Odd Delay Pan", | |
) | |
even_pan = gr.Slider( | |
minimum=-100, | |
maximum=100, | |
value=delay.even_pan.params.pan.item() * 200 - 100, | |
interactive=True, | |
label="Even Delay Pan", | |
) | |
delay_lp_freq = gr.Slider( | |
minimum=200, | |
maximum=16000, | |
value=delay.eq.params.freq.item(), | |
interactive=True, | |
label="Low Pass Frequency (Hz)", | |
) | |
reverb_send = gr.Slider( | |
minimum=-80, | |
maximum=0, | |
value=fx[7].params.sends_0.log10().item() * 20, | |
interactive=True, | |
label="Reverb Send (dB)", | |
) | |
with gr.Column(): | |
delay_plot = gr.Plot( | |
plot_delay(fx), label="Delay Frequency Response", elem_id="delay-plot" | |
) | |
_ = gr.Markdown("## FDN Reverb") | |
with gr.Row(): | |
reverb_plot = gr.Plot( | |
plot_reverb(fx), | |
label="Reverb Tone Correction PEQ", | |
elem_id="reverb-plot", | |
min_width=160, | |
) | |
t60_plot = gr.Plot( | |
plot_t60(fx), label="Reverb T60", elem_id="t60-plot", min_width=160 | |
) | |
with gr.Row(): | |
fdn = fx[7].effects[1] | |
tone_correct_peq = fdn.eq | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("Low Shelf") | |
tc_ls = tone_correct_peq[2] | |
tc_ls_freq = default_freq_slider( | |
minimum=30, maximum=450, value=tc_ls.params.freq.item() | |
) | |
tc_ls_gain = default_gain_slider( | |
minimum=-12, maximum=12, value=tc_ls.params.gain.item() | |
) | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("Peak filter 1") | |
tc_pk1 = tone_correct_peq[0] | |
tc_pk1_freq = default_freq_slider( | |
minimum=200, maximum=2500, value=tc_pk1.params.freq.item() | |
) | |
tc_pk1_gain = default_gain_slider( | |
minimum=-12, maximum=12, value=tc_pk1.params.gain.item() | |
) | |
tc_pk1_q = default_q_slider( | |
minimum=0.1, maximum=3, value=tc_pk1.params.Q.item() | |
) | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("Peak filter 2") | |
tc_pk2 = tone_correct_peq[1] | |
tc_pk2_freq = default_freq_slider( | |
minimum=600, maximum=7000, value=tc_pk2.params.freq.item() | |
) | |
tc_pk2_gain = default_gain_slider( | |
minimum=-12, maximum=12, value=tc_pk2.params.gain.item() | |
) | |
tc_pk2_q = default_q_slider( | |
minimum=0.1, maximum=3, value=tc_pk2.params.Q.item() | |
) | |
with gr.Column(min_width=160): | |
_ = gr.Markdown("High Shelf") | |
tc_hs = tone_correct_peq[3] | |
tc_hs_freq = default_freq_slider( | |
minimum=1500, maximum=16000, value=tc_hs.params.freq.item() | |
) | |
tc_hs_gain = default_gain_slider( | |
minimum=-12, maximum=12, value=tc_hs.params.gain.item() | |
) | |
with gr.Row(): | |
json_output = gr.JSON( | |
model2json(fx), label="Effect Settings", max_height=800, open=True | |
) | |
update_pc = lambda z, i: z[:NUMBER_OF_PCS].tolist() + [z[i - 1].item()] | |
update_pc_outputs = sliders + [extra_slider] | |
peq_sliders = [ | |
pk1_freq, | |
pk1_gain, | |
pk1_q, | |
pk2_freq, | |
pk2_gain, | |
pk2_q, | |
ls_freq, | |
ls_gain, | |
hs_freq, | |
hs_gain, | |
lp_freq, | |
lp_q, | |
hp_freq, | |
hp_q, | |
] | |
peq_attr_names = ( | |
["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2 + ["freq", "Q"] * 2 | |
) | |
peq_indices = [0] * 3 + [1] * 3 + [2] * 2 + [3] * 2 + [4] * 2 + [5] * 2 | |
cmp_sliders = [ | |
cmp_th, | |
cmp_ratio, | |
make_up, | |
exp_ratio, | |
exp_th, | |
avg_coef, | |
attack_time, | |
release_time, | |
] | |
cmp_update_funcs = [update_param] * 6 + [update_atrt] * 2 | |
cmp_attr_names = [ | |
"cmp_th", | |
"cmp_ratio", | |
"make_up", | |
"exp_ratio", | |
"exp_th", | |
"avg_coef", | |
"at", | |
"rt", | |
] | |
cmp_update_plot_flag = [True] * 5 + [False] * 3 | |
delay_sliders = [delay_time, feedback, delay_lp_freq, delay_gain, odd_pan, even_pan] | |
delay_update_funcs = ( | |
[update_param] * 3 | |
+ [lambda m, a, v: update_param(m, a, 10 ** (v / 20))] | |
+ [lambda m, a, v: update_param(m, a, (v + 100) / 200)] * 2 | |
) | |
delay_attr_names = [ | |
"params.delay", | |
"params.feedback", | |
"eq.params.freq", | |
"params.gain", | |
"odd_pan.params.pan", | |
"even_pan.params.pan", | |
] | |
delay_update_plot_flag = [True] * 4 + [False] * 2 | |
tc_peq_sliders = [ | |
tc_pk1_freq, | |
tc_pk1_gain, | |
tc_pk1_q, | |
tc_pk2_freq, | |
tc_pk2_gain, | |
tc_pk2_q, | |
tc_ls_freq, | |
tc_ls_gain, | |
tc_hs_freq, | |
tc_hs_gain, | |
] | |
tc_peq_attr_names = ["freq", "gain", "Q"] * 2 + ["freq", "gain"] * 2 | |
tc_peq_indices = [0] * 3 + [1] * 3 + [2] * 2 + [3] * 2 | |
all_effect_sliders = ( | |
peq_sliders + cmp_sliders + delay_sliders + tc_peq_sliders + [reverb_send] | |
) | |
split_sizes = [ | |
len(peq_sliders), | |
len(cmp_sliders), | |
len(delay_sliders), | |
len(tc_peq_sliders), | |
1, | |
] | |
split_indexes = list( | |
accumulate(split_sizes, initial=0) | |
) # [0, len(peq_sliders), len(peq_sliders) + len(cmp_sliders), ...] | |
def assign_fx_params(fx, *args): | |
peq_sliders, cmp_sliders, delay_sliders, tc_peq_sliders = map( | |
lambda i, j: args[i:j], split_indexes[:-2], split_indexes[1:-1] | |
) | |
reverb_send_slider = args[-1] | |
for idx, s, attr_name in zip(peq_indices, peq_sliders, peq_attr_names): | |
update_param(fx[idx].params, attr_name, s) | |
for f, s, attr_name in zip(cmp_update_funcs, cmp_sliders, cmp_attr_names): | |
f(fx[6].params, attr_name, s) | |
for f, s, attr_name in zip(delay_update_funcs, delay_sliders, delay_attr_names): | |
m, name = get_last_attribute(fx[7].effects[0], attr_name) | |
f(m, name, s) | |
for idx, s, attr_name in zip(tc_peq_indices, tc_peq_sliders, tc_peq_attr_names): | |
update_param(fx[7].effects[1].eq[idx].params, attr_name, s) | |
update_param(fx[7].params, "sends_0", 10 ** (reverb_send_slider / 20)) | |
return fx | |
accum_func_results = lambda init, *fs: reduce( | |
lambda x, f: (f(x[0]), *x), fs, (init,) | |
) | |
x2z_common_steps = chain_functions( | |
lambda x, *all_s: assign_fx_params(vec2fx(x), *all_s), | |
lambda fx: accum_func_results(fx, fx2x, x2z), | |
) | |
for s in peq_sliders: | |
s.input( | |
chain_functions( | |
lambda x, i, *args: x2z_common_steps(x, *args) + (i,), | |
lambda z, x, fx, extra_pc_idx: [z, x] | |
+ [model2json(fx), plot_eq(fx)] | |
+ update_pc(z, extra_pc_idx), | |
), | |
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, | |
outputs=[z, fx_params, json_output, peq_plot] + update_pc_outputs, | |
) | |
for s, update_plot in zip(cmp_sliders, cmp_update_plot_flag): | |
s.input( | |
chain_functions( | |
lambda x, i, *args: x2z_common_steps(x, *args) + (i,), | |
lambda z, x, fx, e_pc_i, update_plot=update_plot: [z, x] | |
+ [model2json(fx)] | |
+ ([plot_comp(fx)] if update_plot else []) | |
+ update_pc(z, e_pc_i), | |
), | |
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, | |
outputs=[z, fx_params, json_output] | |
+ ([comp_plot] if update_plot else []) | |
+ update_pc_outputs, | |
) | |
for s, update_plot in zip(delay_sliders, delay_update_plot_flag): | |
s.input( | |
chain_functions( | |
lambda x, i, *args: x2z_common_steps(x, *args) + (i,), | |
lambda z, x, fx, e_pc_i, update_plot=update_plot: ( | |
[z, x] | |
+ [model2json(fx)] | |
+ ([plot_delay(fx)] if update_plot else []) | |
+ update_pc(z, e_pc_i) | |
), | |
), | |
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, | |
outputs=[z, fx_params] | |
+ [json_output] | |
+ ([delay_plot] if update_plot else []) | |
+ update_pc_outputs, | |
) | |
reverb_send.input( | |
chain_functions( | |
lambda x, i, *args: x2z_common_steps(x, *args) + (i,), | |
lambda z, x, fx, e_pc_i: [z, x] + [model2json(fx)] + update_pc(z, e_pc_i), | |
), | |
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, | |
outputs=[z, fx_params, json_output] + update_pc_outputs, | |
) | |
for s in tc_peq_sliders: | |
s.input( | |
chain_functions( | |
lambda x, i, *args: x2z_common_steps(x, *args) + (i,), | |
lambda z, x, fx, e_pc_i: [z, x] | |
+ [model2json(fx), plot_reverb(fx)] | |
+ update_pc(z, e_pc_i), | |
), | |
inputs=[fx_params, extra_pc_dropdown] + all_effect_sliders, | |
outputs=[z, fx_params, json_output, reverb_plot] + update_pc_outputs, | |
) | |
render_button.click( | |
chain_functions( | |
lambda audio, ratio, x, *all_s: ( | |
audio, | |
ratio, | |
assign_fx_params(vec2fx(x), *all_s), | |
), | |
inference, | |
), | |
inputs=[ | |
audio_input, | |
dry_wet_ratio, | |
fx_params, | |
] | |
+ all_effect_sliders, | |
outputs=[ | |
audio_output, | |
direct_output, | |
wet_output, | |
], | |
) | |
update_fx = lambda fx: [ | |
fx[0].params.freq.item(), | |
fx[0].params.gain.item(), | |
fx[0].params.Q.item(), | |
fx[1].params.freq.item(), | |
fx[1].params.gain.item(), | |
fx[1].params.Q.item(), | |
fx[2].params.freq.item(), | |
fx[2].params.gain.item(), | |
fx[3].params.freq.item(), | |
fx[3].params.gain.item(), | |
fx[4].params.freq.item(), | |
fx[4].params.Q.item(), | |
fx[5].params.freq.item(), | |
fx[5].params.Q.item(), | |
fx[6].params.cmp_th.item(), | |
fx[6].params.cmp_ratio.item(), | |
fx[6].params.make_up.item(), | |
fx[6].params.exp_th.item(), | |
fx[6].params.exp_ratio.item(), | |
coef2ms(fx[6].params.at, 44100).item(), | |
coef2ms(fx[6].params.rt, 44100).item(), | |
fx[7].effects[0].params.delay.item(), | |
fx[7].effects[0].params.feedback.item(), | |
fx[7].effects[0].params.gain.log10().item() * 20, | |
fx[7].effects[0].eq.params.freq.item(), | |
fx[7].effects[0].odd_pan.params.pan.item() * 200 - 100, | |
fx[7].effects[0].even_pan.params.pan.item() * 200 - 100, | |
fx[7].params.sends_0.log10().item() * 20, | |
fx[7].effects[1].eq[0].params.freq.item(), | |
fx[7].effects[1].eq[0].params.gain.item(), | |
fx[7].effects[1].eq[0].params.Q.item(), | |
fx[7].effects[1].eq[1].params.freq.item(), | |
fx[7].effects[1].eq[1].params.gain.item(), | |
fx[7].effects[1].eq[1].params.Q.item(), | |
fx[7].effects[1].eq[2].params.freq.item(), | |
fx[7].effects[1].eq[2].params.gain.item(), | |
fx[7].effects[1].eq[3].params.freq.item(), | |
fx[7].effects[1].eq[3].params.gain.item(), | |
] | |
update_fx_outputs = [ | |
pk1_freq, | |
pk1_gain, | |
pk1_q, | |
pk2_freq, | |
pk2_gain, | |
pk2_q, | |
ls_freq, | |
ls_gain, | |
hs_freq, | |
hs_gain, | |
lp_freq, | |
lp_q, | |
hp_freq, | |
hp_q, | |
cmp_th, | |
cmp_ratio, | |
make_up, | |
exp_th, | |
exp_ratio, | |
attack_time, | |
release_time, | |
delay_time, | |
feedback, | |
delay_gain, | |
delay_lp_freq, | |
odd_pan, | |
even_pan, | |
reverb_send, | |
tc_pk1_freq, | |
tc_pk1_gain, | |
tc_pk1_q, | |
tc_pk2_freq, | |
tc_pk2_gain, | |
tc_pk2_q, | |
tc_ls_freq, | |
tc_ls_gain, | |
tc_hs_freq, | |
tc_hs_gain, | |
] | |
update_plots = lambda fx: [ | |
plot_eq(fx), | |
plot_comp(fx), | |
plot_delay(fx), | |
plot_reverb(fx), | |
plot_t60(fx), | |
] | |
update_plots_outputs = [ | |
peq_plot, | |
comp_plot, | |
delay_plot, | |
reverb_plot, | |
t60_plot, | |
] | |
update_all = ( | |
lambda z, fx, i: update_pc(z, i) | |
+ update_fx(fx) | |
+ update_plots(fx) | |
+ [model2json(fx)] | |
) | |
update_all_outputs = ( | |
update_pc_outputs + update_fx_outputs + update_plots_outputs + [json_output] | |
) | |
z2x_common_steps = chain_functions( | |
lambda z: accum_func_results(z, z2x, vec2fx), | |
lambda fx, x, z: (z, x, fx), | |
) | |
random_button.click( | |
chain_functions( | |
lambda i: ( | |
*z2x_common_steps(torch.randn_like(mean).clip(SLIDER_MIN, SLIDER_MAX)), | |
i, | |
), | |
lambda z, x, fx, i: [z, x] + update_all(z, fx, i), | |
), | |
inputs=extra_pc_dropdown, | |
outputs=[z, fx_params] + update_all_outputs, | |
) | |
reset_button.click( | |
chain_functions( | |
lambda: z2x_common_steps(torch.zeros_like(mean)), | |
lambda z, x, fx: [z, x] + update_all(z, fx, NUMBER_OF_PCS), | |
), | |
outputs=[z, fx_params] + update_all_outputs, | |
) | |
def update_z(z, s, i): | |
z[i] = s | |
return z | |
for i, slider in enumerate(sliders): | |
slider.input( | |
chain_functions( | |
lambda z, s, i=i: update_z(z, s, i), | |
z2x_common_steps, | |
lambda z, x, fx: [z, x, model2json(fx)] | |
+ update_fx(fx) | |
+ update_plots(fx), | |
), | |
inputs=[z, slider], | |
outputs=[z, fx_params, json_output] | |
+ update_fx_outputs | |
+ update_plots_outputs, | |
) | |
extra_slider.input( | |
chain_functions( | |
lambda z, s, i: update_z(z, s, i - 1), | |
z2x_common_steps, | |
lambda z, x, fx: [z, x, model2json(fx)] + update_fx(fx) + update_plots(fx), | |
), | |
inputs=[z, extra_slider, extra_pc_dropdown], | |
outputs=[z, fx_params, json_output] + update_fx_outputs + update_plots_outputs, | |
) | |
extra_pc_dropdown.input( | |
lambda z, i: z[i - 1].item(), | |
inputs=[z, extra_pc_dropdown], | |
outputs=extra_slider, | |
) | |
preset_dropdown.input( | |
chain_functions( | |
lambda i, _: (mean if i == "none" else presets[i - 1], _), | |
lambda x, i: (x2z(x), x, vec2fx(x), i), | |
lambda z, x, fx, i: [z, x] + update_all(z, fx, i), | |
), | |
inputs=[preset_dropdown, extra_pc_dropdown], | |
outputs=[z, fx_params] + update_all_outputs, | |
) | |
dry_wet_ratio.input( | |
chain_functions( | |
lambda _, *args: (_, *map(lambda x: x[1] / 32768, args)), | |
lambda ratio, d, w: math.sqrt(2) | |
* ( | |
math.cos(ratio * math.pi * 0.5) * d | |
+ math.sin(ratio * math.pi * 0.5) * w | |
), | |
lambda x: (44100, (x * 32768).astype(np.int16)), | |
), | |
inputs=[dry_wet_ratio, direct_output, wet_output], | |
outputs=[audio_output], | |
) | |
demo.launch() | |