|
import os |
|
import cv2 |
|
from PIL import Image |
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import base64 |
|
import requests |
|
import json |
|
import time |
|
from requests.adapters import HTTPAdapter |
|
|
|
def tryon(person_img, garment_img, seed, randomize_seed): |
|
post_start_time = time.time() |
|
if person_img is None or garment_img is None: |
|
return None, None, "Empty image" |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes() |
|
encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8') |
|
encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes() |
|
encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8') |
|
|
|
url = "http://" + os.environ['tryon_url'] + "Submit" |
|
token = os.environ['token'] |
|
cookie = os.environ['Cookie'] |
|
referer = os.environ['referer'] |
|
headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer} |
|
data = { |
|
"clothImage": encoded_garment_img, |
|
"humanImage": encoded_person_img, |
|
"seed": seed |
|
} |
|
try: |
|
response = requests.post(url, headers=headers, data=json.dumps(data), timeout=20) |
|
print("post response code", response.status_code) |
|
if response.status_code == 200: |
|
result = response.json()['result'] |
|
status = result['status'] |
|
if status == "success": |
|
uuid = result['result'] |
|
print(uuid) |
|
finally: |
|
pass |
|
post_end_time = time.time() |
|
print(f"time used: {post_end_time-post_start_time}") |
|
|
|
get_start_time =time.time() |
|
time.sleep(10) |
|
Max_Retry = 10 |
|
for i in range(Max_Retry): |
|
try: |
|
url = "http://" + os.environ['tryon_url'] + "Query?taskId=" + uuid |
|
response = requests.get(url, headers=headers, timeout=15) |
|
print("get response code", response.status_code) |
|
print(response.text) |
|
if response.status_code == 200: |
|
result = response.json()['result'] |
|
status = result['status'] |
|
if status == "success": |
|
result = base64.b64decode(result['result']) |
|
result_np = np.frombuffer(result, np.uint8) |
|
result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED) |
|
result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR) |
|
info = "Success" |
|
break |
|
else: |
|
print(response.text) |
|
info = "URL error, pleace contact the admin" |
|
except requests.exceptions.ReadTimeout: |
|
print("timeout") |
|
info = "Too many users, please try again later" |
|
time.sleep(1) |
|
get_end_time = time.time() |
|
print(f"time used: {get_end_time-get_start_time}") |
|
|
|
return result_img, seed, info |
|
|
|
def start_tryon(person_img, garment_img, seed, randomize_seed): |
|
start_time = time.time() |
|
if person_img is None or garment_img is None: |
|
return None, None, "Empty image" |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes() |
|
encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8') |
|
encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes() |
|
encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8') |
|
|
|
url = "http://" + os.environ['tryon_url'] |
|
token = os.environ['token'] |
|
cookie = os.environ['Cookie'] |
|
referer = os.environ['referer'] |
|
|
|
headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer} |
|
data = { |
|
"clothImage": encoded_garment_img, |
|
"humanImage": encoded_person_img, |
|
"seed": seed |
|
} |
|
|
|
result_img = None |
|
try: |
|
session = requests.Session() |
|
response = session.post(url, headers=headers, data=json.dumps(data), timeout=60) |
|
print("response code", response.status_code) |
|
if response.status_code == 200: |
|
result = response.json()['result'] |
|
status = result['status'] |
|
if status == "success": |
|
result = base64.b64decode(result['result']) |
|
result_np = np.frombuffer(result, np.uint8) |
|
result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED) |
|
result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR) |
|
info = "Success" |
|
else: |
|
info = "Try again latter" |
|
else: |
|
print(response.text) |
|
info = "URL error, pleace contact the admin" |
|
except requests.exceptions.ReadTimeout: |
|
print("timeout") |
|
info = "Too many users, please try again later" |
|
raise gr.Error("Too many users, please try again later") |
|
except Exception as err: |
|
print(f"其他错误: {err}") |
|
info = "Error, pleace contact the admin" |
|
end_time = time.time() |
|
print(f"time used: {end_time-start_time}") |
|
|
|
return result_img, seed, info |
|
|
|
MAX_SEED = 999999 |
|
|
|
example_path = os.path.join(os.path.dirname(__file__), 'assets') |
|
|
|
garm_list = os.listdir(os.path.join(example_path,"cloth")) |
|
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] |
|
|
|
human_list = os.listdir(os.path.join(example_path,"human")) |
|
human_list_path = [os.path.join(example_path,"human",human) for human in human_list] |
|
|
|
css=""" |
|
#col-left { |
|
margin: 0 auto; |
|
max-width: 430px; |
|
} |
|
#col-mid { |
|
margin: 0 auto; |
|
max-width: 430px; |
|
} |
|
#col-right { |
|
margin: 0 auto; |
|
max-width: 430px; |
|
} |
|
#col-showcase { |
|
margin: 0 auto; |
|
max-width: 1100px; |
|
} |
|
#button { |
|
color: blue; |
|
} |
|
""" |
|
|
|
def load_description(fp): |
|
with open(fp, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
return content |
|
|
|
def change_imgs(image1, image2): |
|
return image1, image2 |
|
|
|
with gr.Blocks(css=css) as Tryon: |
|
gr.HTML(load_description("assets/title.md")) |
|
with gr.Row(): |
|
with gr.Column(elem_id = "col-left"): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<div> |
|
<h2>Step 1. Upload a person image. ⬇️</h2> |
|
</div> |
|
</div> |
|
""") |
|
with gr.Column(elem_id = "col-mid"): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<div> |
|
<h2>Step 2. Upload a garment image. ⬇️</h2> |
|
</div> |
|
</div> |
|
""") |
|
with gr.Column(elem_id = "col-right"): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<div> |
|
<h2>Step 3. Press the “Run” button to get try-on results.</h2> |
|
</div> |
|
</div> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(elem_id = "col-left"): |
|
imgs = gr.Image(label="Person image", sources='upload', type="numpy") |
|
|
|
example = gr.Examples( |
|
inputs=imgs, |
|
examples_per_page=12, |
|
examples=human_list_path |
|
) |
|
with gr.Column(elem_id = "col-mid"): |
|
garm_img = gr.Image(label="Garment image", sources='upload', type="numpy") |
|
example = gr.Examples( |
|
inputs=garm_img, |
|
examples_per_page=12, |
|
examples=garm_list_path |
|
) |
|
with gr.Column(elem_id = "col-right"): |
|
image_out = gr.Image(label="Result", show_share_button=False) |
|
with gr.Row(): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Random seed", value=True) |
|
with gr.Row(): |
|
seed_used = gr.Number(label="Seed used") |
|
result_info = gr.Text(label="Response") |
|
try_button = gr.Button(value="Run", elem_id="button") |
|
test_button = gr.Button(value="Test", elem_id="button") |
|
|
|
|
|
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon',concurrency_limit=10) |
|
test_button.click(fn=tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon',concurrency_limit=10) |
|
|
|
with gr.Column(elem_id = "col-showcase"): |
|
gr.HTML(""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<div> |
|
<h2>Virtual try-on examples in pairs of person and garment images.</h2> |
|
</div> |
|
</div> |
|
""") |
|
show_case = gr.Examples( |
|
examples=[ |
|
["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"], |
|
["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"], |
|
["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"], |
|
], |
|
inputs=[imgs, garm_img, image_out], |
|
label=None |
|
) |
|
|
|
|
|
|
|
Tryon.queue(max_size = 20).launch(max_threads = 5) |
|
|