|
import os |
|
import re |
|
|
|
import cn2an |
|
from pypinyin import lazy_pinyin, Style |
|
|
|
|
|
from .symbols import language_tone_start_map |
|
from .tone_sandhi import ToneSandhi |
|
from .english import g2p as g2p_en |
|
from transformers import AutoTokenizer |
|
|
|
punctuation = ["!", "?", "…", ",", ".", "'", "-"] |
|
current_file_path = os.path.dirname(__file__) |
|
pinyin_to_symbol_map = { |
|
line.split("\t")[0]: line.strip().split("\t")[1] |
|
for line in open(os.path.join(current_file_path, "opencpop-strict.txt")).readlines() |
|
} |
|
|
|
import jieba.posseg as psg |
|
|
|
|
|
rep_map = { |
|
":": ",", |
|
";": ",", |
|
",": ",", |
|
"。": ".", |
|
"!": "!", |
|
"?": "?", |
|
"\n": ".", |
|
"·": ",", |
|
"、": ",", |
|
"...": "…", |
|
"$": ".", |
|
"“": "'", |
|
"”": "'", |
|
"‘": "'", |
|
"’": "'", |
|
"(": "'", |
|
")": "'", |
|
"(": "'", |
|
")": "'", |
|
"《": "'", |
|
"》": "'", |
|
"【": "'", |
|
"】": "'", |
|
"[": "'", |
|
"]": "'", |
|
"—": "-", |
|
"~": "-", |
|
"~": "-", |
|
"「": "'", |
|
"」": "'", |
|
} |
|
|
|
tone_modifier = ToneSandhi() |
|
|
|
|
|
def replace_punctuation(text): |
|
text = text.replace("嗯", "恩").replace("呣", "母") |
|
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys())) |
|
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text) |
|
replaced_text = re.sub(r"[^\u4e00-\u9fa5_a-zA-Z\s" + "".join(punctuation) + r"]+", "", replaced_text) |
|
replaced_text = re.sub(r"[\s]+", " ", replaced_text) |
|
|
|
return replaced_text |
|
|
|
|
|
def g2p(text, impl='v2'): |
|
pattern = r"(?<=[{0}])\s*".format("".join(punctuation)) |
|
sentences = [i for i in re.split(pattern, text) if i.strip() != ""] |
|
if impl == 'v1': |
|
_func = _g2p |
|
elif impl == 'v2': |
|
_func = _g2p_v2 |
|
else: |
|
raise NotImplementedError() |
|
phones, tones, word2ph = _func(sentences) |
|
assert sum(word2ph) == len(phones) |
|
|
|
phones = ["_"] + phones + ["_"] |
|
tones = [0] + tones + [0] |
|
word2ph = [1] + word2ph + [1] |
|
return phones, tones, word2ph |
|
|
|
|
|
def _get_initials_finals(word): |
|
initials = [] |
|
finals = [] |
|
orig_initials = lazy_pinyin(word, neutral_tone_with_five=True, style=Style.INITIALS) |
|
orig_finals = lazy_pinyin( |
|
word, neutral_tone_with_five=True, style=Style.FINALS_TONE3 |
|
) |
|
for c, v in zip(orig_initials, orig_finals): |
|
initials.append(c) |
|
finals.append(v) |
|
return initials, finals |
|
|
|
model_id = 'bert-base-multilingual-uncased' |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
def _g2p(segments): |
|
phones_list = [] |
|
tones_list = [] |
|
word2ph = [] |
|
for seg in segments: |
|
|
|
|
|
seg_cut = psg.lcut(seg) |
|
initials = [] |
|
finals = [] |
|
seg_cut = tone_modifier.pre_merge_for_modify(seg_cut) |
|
for word, pos in seg_cut: |
|
if pos == "eng": |
|
initials.append(['EN_WORD']) |
|
finals.append([word]) |
|
else: |
|
sub_initials, sub_finals = _get_initials_finals(word) |
|
sub_finals = tone_modifier.modified_tone(word, pos, sub_finals) |
|
initials.append(sub_initials) |
|
finals.append(sub_finals) |
|
|
|
|
|
initials = sum(initials, []) |
|
finals = sum(finals, []) |
|
|
|
for c, v in zip(initials, finals): |
|
if c == 'EN_WORD': |
|
tokenized_en = tokenizer.tokenize(v) |
|
phones_en, tones_en, word2ph_en = g2p_en(text=None, pad_start_end=False, tokenized=tokenized_en) |
|
|
|
tones_en = [t + language_tone_start_map['EN'] for t in tones_en] |
|
phones_list += phones_en |
|
tones_list += tones_en |
|
word2ph += word2ph_en |
|
else: |
|
raw_pinyin = c + v |
|
|
|
|
|
if c == v: |
|
assert c in punctuation |
|
phone = [c] |
|
tone = "0" |
|
word2ph.append(1) |
|
else: |
|
v_without_tone = v[:-1] |
|
tone = v[-1] |
|
|
|
pinyin = c + v_without_tone |
|
assert tone in "12345" |
|
|
|
if c: |
|
|
|
v_rep_map = { |
|
"uei": "ui", |
|
"iou": "iu", |
|
"uen": "un", |
|
} |
|
if v_without_tone in v_rep_map.keys(): |
|
pinyin = c + v_rep_map[v_without_tone] |
|
else: |
|
|
|
pinyin_rep_map = { |
|
"ing": "ying", |
|
"i": "yi", |
|
"in": "yin", |
|
"u": "wu", |
|
} |
|
if pinyin in pinyin_rep_map.keys(): |
|
pinyin = pinyin_rep_map[pinyin] |
|
else: |
|
single_rep_map = { |
|
"v": "yu", |
|
"e": "e", |
|
"i": "y", |
|
"u": "w", |
|
} |
|
if pinyin[0] in single_rep_map.keys(): |
|
pinyin = single_rep_map[pinyin[0]] + pinyin[1:] |
|
|
|
assert pinyin in pinyin_to_symbol_map.keys(), (pinyin, seg, raw_pinyin) |
|
phone = pinyin_to_symbol_map[pinyin].split(" ") |
|
word2ph.append(len(phone)) |
|
|
|
phones_list += phone |
|
tones_list += [int(tone)] * len(phone) |
|
return phones_list, tones_list, word2ph |
|
|
|
|
|
def text_normalize(text): |
|
numbers = re.findall(r"\d+(?:\.?\d+)?", text) |
|
for number in numbers: |
|
text = text.replace(number, cn2an.an2cn(number), 1) |
|
text = replace_punctuation(text) |
|
return text |
|
|
|
|
|
def get_bert_feature(text, word2ph, device): |
|
from . import chinese_bert |
|
return chinese_bert.get_bert_feature(text, word2ph, model_id='bert-base-multilingual-uncased', device=device) |
|
|
|
from .chinese import _g2p as _chinese_g2p |
|
def _g2p_v2(segments): |
|
spliter = '#$&^!@' |
|
|
|
phones_list = [] |
|
tones_list = [] |
|
word2ph = [] |
|
|
|
for text in segments: |
|
assert spliter not in text |
|
|
|
text = re.sub('([a-zA-Z\s]+)', lambda x: f'{spliter}{x.group(1)}{spliter}', text) |
|
texts = text.split(spliter) |
|
texts = [t for t in texts if len(t) > 0] |
|
|
|
|
|
for text in texts: |
|
if re.match('[a-zA-Z\s]+', text): |
|
|
|
tokenized_en = tokenizer.tokenize(text) |
|
phones_en, tones_en, word2ph_en = g2p_en(text=None, pad_start_end=False, tokenized=tokenized_en) |
|
|
|
tones_en = [t + language_tone_start_map['EN'] for t in tones_en] |
|
phones_list += phones_en |
|
tones_list += tones_en |
|
word2ph += word2ph_en |
|
else: |
|
phones_zh, tones_zh, word2ph_zh = _chinese_g2p([text]) |
|
phones_list += phones_zh |
|
tones_list += tones_zh |
|
word2ph += word2ph_zh |
|
return phones_list, tones_list, word2ph |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
text = "NFT啊!chemistry 但是《原神》是由,米哈\游自主, [研发]的一款全.新开放世界.冒险游戏" |
|
text = '我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。' |
|
text = '今天下午,我们准备去shopping mall购物,然后晚上去看一场movie。' |
|
text = '我们现在 also 能够 help 很多公司 use some machine learning 的 algorithms 啊!' |
|
text = text_normalize(text) |
|
print(text) |
|
phones, tones, word2ph = g2p(text, impl='v2') |
|
bert = get_bert_feature(text, word2ph, device='cuda:0') |
|
print(phones) |
|
import pdb; pdb.set_trace() |
|
|
|
|
|
|
|
|
|
|
|
|