youj2005 commited on
Commit
0b73704
1 Parent(s): 7a7170b

Fixed MNLI issues

Browse files
Files changed (1) hide show
  1. app.py +46 -21
app.py CHANGED
@@ -11,50 +11,75 @@ qa_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
11
  qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto")
12
 
13
  def predict(context, intent, multi_class):
14
- input_text = "In one word, what is the opposite of: " + intent + "?"
15
  input_ids = qa_tokenizer(input_text, return_tensors="pt").input_ids.to(device)
16
- opposite_output = qa_tokenizer.decode(qa_model.generate(input_ids, max_length=2)[0])
17
- input_text = "In one word, what is the following describing: " + context
18
  input_ids = qa_tokenizer(input_text, return_tensors="pt").input_ids.to(device)
19
- object_output = qa_tokenizer.decode(qa_model.generate(input_ids, max_length=2)[0])
20
- batch = ['I think the ' + object_output + ' is ' + intent, 'I think the ' + object_output + ' is ' + opposite_output, 'I think the ' + object_output + ' are neither ' + intent + ' nor ' + opposite_output]
 
21
  outputs = []
 
22
  for i, hypothesis in enumerate(batch):
23
- input_ids = te_tokenizer.encode(context, hypothesis, return_tensors='pt').to(device)
 
24
  # -> [contradiction, neutral, entailment]
25
  logits = te_model(input_ids)[0][0]
26
 
27
- if (i == 2):
28
  # -> [contradiction, entailment]
29
  probs = logits[[0,2]].softmax(dim=0)
30
  else:
31
  probs = logits.softmax(dim=0)
32
  outputs.append(probs)
33
 
34
- # -> [entailment, contradiction]
35
- outputs[2] = outputs[2].flip(dims=[0])
36
- # -> [entailment, neutral, contradiction]
 
 
 
37
  outputs[0] = outputs[0].flip(dims=[0])
38
- pn_tensor = (outputs[0] + outputs[1])/2
39
- pn_tensor[1] = pn_tensor[1] * outputs[2][0]
40
- pn_tensor[2] = pn_tensor[2] * outputs[2][1]
41
- pn_tensor[0] = pn_tensor[0] * outputs[2][1]
42
 
43
- pn_tensor = pn_tensor.exp() - 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
 
45
  if (multi_class):
46
- pn_tensor = torch.sigmoid(pn_tensor)
 
47
  else:
48
- pn_tensor = pn_tensor.softmax(dim=0)
49
- pn_tensor = pn_tensor.tolist()
50
- return {"agree": pn_tensor[0], "neutral": pn_tensor[1], "disagree": pn_tensor[2]}
51
 
52
  gradio_app = gr.Interface(
53
  predict,
54
  inputs=[gr.Text(label="Sentence"), gr.Text(label="Class"), gr.Checkbox(label="Allow multiple true classes")],
55
  outputs=[gr.Label(num_top_classes=3)],
56
  title="Intent Analysis",
57
- description="This model predicts whether or not the **class** describes the **object described in the sentence.**"
58
  )
59
 
60
- gradio_app.launch()
 
11
  qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small", device_map="auto")
12
 
13
  def predict(context, intent, multi_class):
14
+ input_text = "What is the opposite of " + intent + "?"
15
  input_ids = qa_tokenizer(input_text, return_tensors="pt").input_ids.to(device)
16
+ opposite_output = qa_tokenizer.decode(qa_model.generate(input_ids, max_length=2)[0], skip_special_tokens=True)
17
+ input_text = "What object is the following describing: " + context
18
  input_ids = qa_tokenizer(input_text, return_tensors="pt").input_ids.to(device)
19
+ object_output = qa_tokenizer.decode(qa_model.generate(input_ids, max_length=2)[0], skip_special_tokens=True)
20
+ batch = ['The ' + object_output + ' is ' + intent, 'The ' + object_output + ' is ' + opposite_output, 'The ' + object_output + ' is not ' + intent, 'The ' + object_output + ' is not ' + opposite_output]
21
+
22
  outputs = []
23
+ print(intent, opposite_output, object_output)
24
  for i, hypothesis in enumerate(batch):
25
+ # input_ids = te_tokenizer.encode(context, hypothesis, return_tensors='pt').to(device)
26
+ input_ids = te_model(context, hypothesis).to(device)
27
  # -> [contradiction, neutral, entailment]
28
  logits = te_model(input_ids)[0][0]
29
 
30
+ if (i >= 2):
31
  # -> [contradiction, entailment]
32
  probs = logits[[0,2]].softmax(dim=0)
33
  else:
34
  probs = logits.softmax(dim=0)
35
  outputs.append(probs)
36
 
37
+ # calculate the stochastic vector for it being neither the positive or negative class
38
+ perfect_prob = [0, 0]
39
+ perfect_prob[0] = (outputs[2][0] + outputs[3][1])/2
40
+ perfect_prob[1] = 1-perfect_prob[2][0]
41
+
42
+ # -> [entailment, neutral, contradiction] for positive
43
  outputs[0] = outputs[0].flip(dims=[0])
 
 
 
 
44
 
45
+ # combine the negative and positive class by summing by the opposite of the negative class
46
+ aggregated = (outputs[0] + outputs[1])/2
47
+
48
+ # multiplying vectors
49
+ aggregated[1] = aggregated[1] * perfect_prob[0]
50
+
51
+ # if it is neither the positive or negative class, then it is more likely the neutral class, so adjust accordingly
52
+ if (perfect_prob[0] > perfect_prob[1]):
53
+ aggregated[2] = aggregated[2] * perfect_prob[1]
54
+ aggregated[0] = aggregated[0] * perfect_prob[1]
55
+ else:
56
+ # if it is more likely the positive class, increase its probability by a scale of the probability of it not being perfect
57
+ if (aggregated[0] > aggregated[2]):
58
+ aggregated[2] = aggregated[2] * perfect_prob[0]
59
+ aggregated[0] = aggregated[0] * perfect_prob[1]
60
+ # if it is more likely the negative class, increase its probability by a scale of the probability of it not being perfect
61
+ else:
62
+ aggregated[2] = aggregated[2] * perfect_prob[1]
63
+ aggregated[0] = aggregated[0] * perfect_prob[0]
64
+
65
+ # to exagerate differences
66
+ aggregated = aggregated.exp() - 1
67
 
68
+ # multiple true classes
69
  if (multi_class):
70
+ aggregated = torch.sigmoid(aggregated)
71
+ # only one true class
72
  else:
73
+ aggregated = aggregated.softmax(dim=0)
74
+ aggregated = aggregated.tolist()
75
+ return {"agree": aggregated[0], "neutral": aggregated[1], "disagree": aggregated[2]}
76
 
77
  gradio_app = gr.Interface(
78
  predict,
79
  inputs=[gr.Text(label="Sentence"), gr.Text(label="Class"), gr.Checkbox(label="Allow multiple true classes")],
80
  outputs=[gr.Label(num_top_classes=3)],
81
  title="Intent Analysis",
82
+ description="This model predicts whether or not the **_class_** describes the **_object described in the sentence._**"
83
  )
84
 
85
+ gradio_app.launch(share=True)