|
|
|
|
|
|
|
|
|
|
|
|
|
import pytest |
|
import random |
|
|
|
import torch |
|
|
|
from audiocraft.adversarial import ( |
|
AdversarialLoss, |
|
get_adv_criterion, |
|
get_real_criterion, |
|
get_fake_criterion, |
|
FeatureMatchingLoss, |
|
MultiScaleDiscriminator, |
|
) |
|
|
|
|
|
class TestAdversarialLoss: |
|
|
|
def test_adversarial_single_multidiscriminator(self): |
|
adv = MultiScaleDiscriminator() |
|
optimizer = torch.optim.Adam( |
|
adv.parameters(), |
|
lr=1e-4, |
|
) |
|
loss, loss_real, loss_fake = get_adv_criterion('mse'), get_real_criterion('mse'), get_fake_criterion('mse') |
|
adv_loss = AdversarialLoss(adv, optimizer, loss, loss_real, loss_fake) |
|
|
|
B, C, T = 4, 1, random.randint(1000, 5000) |
|
real = torch.randn(B, C, T) |
|
fake = torch.randn(B, C, T) |
|
|
|
disc_loss = adv_loss.train_adv(fake, real) |
|
assert isinstance(disc_loss, torch.Tensor) and isinstance(disc_loss.item(), float) |
|
|
|
loss, loss_feat = adv_loss(fake, real) |
|
assert isinstance(loss, torch.Tensor) and isinstance(loss.item(), float) |
|
|
|
assert loss_feat.item() == 0. |
|
|
|
def test_adversarial_feat_loss(self): |
|
adv = MultiScaleDiscriminator() |
|
optimizer = torch.optim.Adam( |
|
adv.parameters(), |
|
lr=1e-4, |
|
) |
|
loss, loss_real, loss_fake = get_adv_criterion('mse'), get_real_criterion('mse'), get_fake_criterion('mse') |
|
feat_loss = FeatureMatchingLoss() |
|
adv_loss = AdversarialLoss(adv, optimizer, loss, loss_real, loss_fake, feat_loss) |
|
|
|
B, C, T = 4, 1, random.randint(1000, 5000) |
|
real = torch.randn(B, C, T) |
|
fake = torch.randn(B, C, T) |
|
|
|
loss, loss_feat = adv_loss(fake, real) |
|
|
|
assert isinstance(loss, torch.Tensor) and isinstance(loss.item(), float) |
|
assert isinstance(loss_feat, torch.Tensor) and isinstance(loss.item(), float) |
|
|
|
|
|
class TestGeneratorAdversarialLoss: |
|
|
|
def test_hinge_generator_adv_loss(self): |
|
adv_loss = get_adv_criterion(loss_type='hinge') |
|
|
|
t0 = torch.randn(1, 2, 0) |
|
t1 = torch.FloatTensor([1.0, 2.0, 3.0]) |
|
|
|
assert adv_loss(t0).item() == 0.0 |
|
assert adv_loss(t1).item() == -2.0 |
|
|
|
def test_mse_generator_adv_loss(self): |
|
adv_loss = get_adv_criterion(loss_type='mse') |
|
|
|
t0 = torch.randn(1, 2, 0) |
|
t1 = torch.FloatTensor([1.0, 1.0, 1.0]) |
|
t2 = torch.FloatTensor([2.0, 5.0, 5.0]) |
|
|
|
assert adv_loss(t0).item() == 0.0 |
|
assert adv_loss(t1).item() == 0.0 |
|
assert adv_loss(t2).item() == 11.0 |
|
|
|
|
|
class TestDiscriminatorAdversarialLoss: |
|
|
|
def _disc_loss(self, loss_type: str, fake: torch.Tensor, real: torch.Tensor): |
|
disc_loss_real = get_real_criterion(loss_type) |
|
disc_loss_fake = get_fake_criterion(loss_type) |
|
|
|
loss = disc_loss_fake(fake) + disc_loss_real(real) |
|
return loss |
|
|
|
def test_hinge_discriminator_adv_loss(self): |
|
loss_type = 'hinge' |
|
t0 = torch.FloatTensor([0.0, 0.0, 0.0]) |
|
t1 = torch.FloatTensor([1.0, 2.0, 3.0]) |
|
|
|
assert self._disc_loss(loss_type, t0, t0).item() == 2.0 |
|
assert self._disc_loss(loss_type, t1, t1).item() == 3.0 |
|
|
|
def test_mse_discriminator_adv_loss(self): |
|
loss_type = 'mse' |
|
|
|
t0 = torch.FloatTensor([0.0, 0.0, 0.0]) |
|
t1 = torch.FloatTensor([1.0, 1.0, 1.0]) |
|
|
|
assert self._disc_loss(loss_type, t0, t0).item() == 1.0 |
|
assert self._disc_loss(loss_type, t1, t0).item() == 2.0 |
|
|
|
|
|
class TestFeatureMatchingLoss: |
|
|
|
def test_features_matching_loss_base(self): |
|
ft_matching_loss = FeatureMatchingLoss() |
|
length = random.randrange(1, 100_000) |
|
t1 = torch.randn(1, 2, length) |
|
|
|
loss = ft_matching_loss([t1], [t1]) |
|
assert isinstance(loss, torch.Tensor) |
|
assert loss.item() == 0.0 |
|
|
|
def test_features_matching_loss_raises_exception(self): |
|
ft_matching_loss = FeatureMatchingLoss() |
|
length = random.randrange(1, 100_000) |
|
t1 = torch.randn(1, 2, length) |
|
t2 = torch.randn(1, 2, length + 1) |
|
|
|
with pytest.raises(AssertionError): |
|
ft_matching_loss([], []) |
|
|
|
with pytest.raises(AssertionError): |
|
ft_matching_loss([t1], [t1, t1]) |
|
|
|
with pytest.raises(AssertionError): |
|
ft_matching_loss([t1], [t2]) |
|
|
|
def test_features_matching_loss_output(self): |
|
loss_nonorm = FeatureMatchingLoss(normalize=False) |
|
loss_layer_normed = FeatureMatchingLoss(normalize=True) |
|
|
|
length = random.randrange(1, 100_000) |
|
t1 = torch.randn(1, 2, length) |
|
t2 = torch.randn(1, 2, length) |
|
|
|
assert loss_nonorm([t1, t2], [t1, t2]).item() == 0.0 |
|
assert loss_layer_normed([t1, t2], [t1, t2]).item() == 0.0 |
|
|
|
t3 = torch.FloatTensor([1.0, 2.0, 3.0]) |
|
t4 = torch.FloatTensor([2.0, 10.0, 3.0]) |
|
|
|
assert loss_nonorm([t3], [t4]).item() == 3.0 |
|
assert loss_nonorm([t3, t3], [t4, t4]).item() == 6.0 |
|
|
|
assert loss_layer_normed([t3], [t4]).item() == 3.0 |
|
assert loss_layer_normed([t3, t3], [t4, t4]).item() == 3.0 |
|
|