Spaces:
Sleeping
Sleeping
yoonusajwardapiit
commited on
Upload app.py
Browse files
app.py
CHANGED
@@ -82,7 +82,7 @@ class BigramLanguageModel(nn.Module):
|
|
82 |
|
83 |
def generate(self, idx, max_new_tokens):
|
84 |
for _ in range(max_new_tokens):
|
85 |
-
idx_cond = idx[:, -32:]
|
86 |
logits, _ = self(idx_cond)
|
87 |
logits = logits[:, -1, :]
|
88 |
probs = nn.functional.softmax(logits, dim=-1)
|
@@ -112,11 +112,19 @@ decode = lambda l: ''.join([itos[i] for i in l])
|
|
112 |
def generate_text(prompt):
|
113 |
try:
|
114 |
print(f"Received prompt: {prompt}")
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
print(f"Encoded prompt: {context}")
|
|
|
117 |
with torch.no_grad():
|
118 |
generated = model.generate(context, max_new_tokens=250) # Adjust as needed
|
119 |
print(f"Generated tensor: {generated}")
|
|
|
120 |
result = decode(generated[0].tolist())
|
121 |
print(f"Decoded result: {result}")
|
122 |
return result
|
|
|
82 |
|
83 |
def generate(self, idx, max_new_tokens):
|
84 |
for _ in range(max_new_tokens):
|
85 |
+
idx_cond = idx[:, -32:] # Ensure context length does not exceed block size
|
86 |
logits, _ = self(idx_cond)
|
87 |
logits = logits[:, -1, :]
|
88 |
probs = nn.functional.softmax(logits, dim=-1)
|
|
|
112 |
def generate_text(prompt):
|
113 |
try:
|
114 |
print(f"Received prompt: {prompt}")
|
115 |
+
encoded_prompt = encode(prompt)
|
116 |
+
|
117 |
+
# Ensure the prompt length fits within the block size
|
118 |
+
if len(encoded_prompt) > 32:
|
119 |
+
encoded_prompt = encoded_prompt[:32] # Truncate to fit block size
|
120 |
+
|
121 |
+
context = torch.tensor([encoded_prompt], dtype=torch.long)
|
122 |
print(f"Encoded prompt: {context}")
|
123 |
+
|
124 |
with torch.no_grad():
|
125 |
generated = model.generate(context, max_new_tokens=250) # Adjust as needed
|
126 |
print(f"Generated tensor: {generated}")
|
127 |
+
|
128 |
result = decode(generated[0].tolist())
|
129 |
print(f"Decoded result: {result}")
|
130 |
return result
|