|
from keras.models import load_model |
|
from PIL import Image, ImageOps |
|
import numpy as np |
|
import gradio as gr |
|
|
|
|
|
np.set_printoptions(suppress=True) |
|
model = load_model("keras_model.h5", compile=False) |
|
class_names = open("labels.txt", "r").readlines() |
|
|
|
def classify_image(input_img): |
|
"""Classifies the input image using the loaded Keras model.""" |
|
if input_img is None: |
|
return "No image provided" |
|
|
|
size = (224, 224) |
|
image = ImageOps.fit(Image.fromarray(np.uint8(input_img)), size, Image.Resampling.LANCZOS).convert("RGB") |
|
image_array = np.asarray(image) |
|
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 |
|
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) |
|
data[0] = normalized_image_array |
|
|
|
prediction = model.predict(data, verbose=0) |
|
index = np.argmax(prediction) |
|
class_name = class_names[index][2:].strip() |
|
confidence_score = prediction[0][index] |
|
return f"Class: {class_name}, Confidence: {confidence_score:.4f}" |
|
|
|
demo = gr.Interface( |
|
classify_image, |
|
gr.Image(label="Upload image for classification", type="numpy"), |
|
gr.Text(label="Classification Result") |
|
) |
|
demo.launch() |