lionelgarnier
debug
c35aeb6
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import numpy as np
import random
import os
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline, AutoTokenizer
from huggingface_hub import login
from PIL import Image
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import imageio
from easydict import EasyDict as edict
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
hf_token = os.getenv("hf_token")
login(token=hf_token)
# Global constants and default values
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Default system prompt for text generation
DEFAULT_SYSTEM_PROMPT = """You are a product designer with strong knowledge in text-to-image generation. You will receive a product request in the form of a brief description, and your mission will be to imagine a new product design that meets this need.
The deliverable (generated response) will be exclusively a text prompt for the FLUX.1-dev text-to-image AI.
This prompt should include a visual description of the object explicitly mentioning the essential aspects of its function.
Additionally, you should explicitly mention in this prompt the aesthetic/photo characteristics of the image rendering (e.g., photorealistic, high quality, focal length, grain, etc.), knowing that the image will be the main image of this object in the product catalog. The background of the generated image must be entirely white.
The prompt should be without narration."""
# Default Flux parameters
DEFAULT_SEED = 42
DEFAULT_RANDOMIZE_SEED = True
DEFAULT_WIDTH = 512
DEFAULT_HEIGHT = 512
DEFAULT_NUM_INFERENCE_STEPS = 6
DEFAULT_GUIDANCE_SCALE = 0.0
DEFAULT_TEMPERATURE = 0.9
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
_text_gen_pipeline = None
_image_gen_pipeline = None
_trellis_pipeline = None
def start_session(req: gr.Request):
# user_dir = os.path.join(TMP_DIR, "temp_output")
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
# user_dir = os.path.join(TMP_DIR, "temp_output")
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def preprocess_image(image: Image.Image) -> Image.Image:
trellis = get_trellis_pipeline()
if trellis is None:
# If the pipeline is not loaded, just return the original image
return image
processed_image = trellis.preprocess_image(image)
return processed_image
@spaces.GPU()
def get_image_gen_pipeline():
global _image_gen_pipeline
if (_image_gen_pipeline is None):
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
_image_gen_pipeline = DiffusionPipeline.from_pretrained(
# "black-forest-labs/FLUX.1-schnell",
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
).to(device)
except Exception as e:
print(f"Error loading image generation model: {e}")
return None
return _image_gen_pipeline
@spaces.GPU()
def get_text_gen_pipeline():
global _text_gen_pipeline
if (_text_gen_pipeline is None):
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(
# "mistralai/Mistral-7B-Instruct-v0.3",
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
use_fast=True
)
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
_text_gen_pipeline = pipeline(
# "text-generation",
# model="mistralai/Mistral-7B-Instruct-v0.3",
model="deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
tokenizer=tokenizer,
max_new_tokens=2048,
device=device,
pad_token_id=tokenizer.pad_token_id
)
except Exception as e:
print(f"Error loading text generation model: {e}")
return None
return _text_gen_pipeline
# @spaces.GPU()
def get_trellis_pipeline():
global _trellis_pipeline
if _trellis_pipeline is None:
try:
print("Loading Trellis pipeline...")
_trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
except Exception as e:
print(f"Error loading Trellis pipeline: {e}")
return None
return _trellis_pipeline
@spaces.GPU()
def refine_prompt(
prompt,
system_prompt=DEFAULT_SYSTEM_PROMPT,
progress=gr.Progress(track_tqdm=True)
):
text_gen = get_text_gen_pipeline()
if text_gen is None:
return "", "Text generation model is unavailable."
try:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
# Indicate progress started
progress(0, desc="Generating text")
# Generate text
refined_prompt = text_gen(messages)
# Indicate progress complete
progress(1)
# Extract just the assistant's content from the response
try:
messages = refined_prompt[0]['generated_text']
# Find the last message with role 'assistant'
assistant_messages = [msg for msg in messages if msg['role'] == 'assistant']
if not assistant_messages:
return "", "Error: No assistant response found"
assistant_content = assistant_messages[-1]['content']
# Remove quotation marks at the beginning and end
if assistant_content.startswith('"') and assistant_content.endswith('"'):
assistant_content = assistant_content[1:-1]
return assistant_content, "Prompt refined successfully!"
except (KeyError, IndexError):
return "", "Error: Unexpected response format from the model"
except Exception as e:
print(f"Error in refine_prompt: {str(e)}") # Add debug print
return "", f"Error refining prompt: {str(e)}"
def validate_dimensions(width, height):
if width * height > MAX_IMAGE_SIZE * MAX_IMAGE_SIZE:
return False, "Image dimensions too large"
return True, None
@spaces.GPU()
def generate_image(prompt, seed=DEFAULT_SEED,
randomize_seed=DEFAULT_RANDOMIZE_SEED,
width=DEFAULT_WIDTH,
height=DEFAULT_HEIGHT,
num_inference_steps=DEFAULT_NUM_INFERENCE_STEPS,
progress=gr.Progress(track_tqdm=True)):
try:
# Validate that prompt is not empty
if not prompt or prompt.strip() == "":
return None, "Please provide a valid prompt."
progress(0.1, desc="Loading model")
pipe = get_image_gen_pipeline()
if pipe is None:
return None, "Image generation model is unavailable."
is_valid, error_msg = validate_dimensions(width, height)
if not is_valid:
return None, error_msg
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Use default torch generator instead of cuda-specific generator
generator = torch.Generator().manual_seed(seed)
progress(0.3, desc="Running inference")
# Match the working example's parameters
output = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=DEFAULT_GUIDANCE_SCALE,
)
progress(0.8, desc="Processing output")
image = output.images[0]
progress(1.0, desc="Complete")
return image, f"Image generated successfully with seed {seed}"
except Exception as e:
print(f"Error in generate_image: {str(e)}")
return None, f"Error generating image: {str(e)}"
examples = [
"a backpack for kids, flower style",
"medieval flip flops",
"cat shaped cake mold",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
@spaces.GPU
def image_to_3d(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
req: gr.Request,
) -> Tuple[dict, str]:
try:
# Load the Trellis pipeline
pipeline = get_trellis_pipeline()
if pipeline is None:
return None, "Trellis pipeline is unavailable."
pipeline.cuda()
# Preprocess image
image = preprocess_image(image)
# Run the pipeline
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
# temp_dir = os.path.join(TMP_DIR, "temp_output")
temp_dir = os.path.join(TMP_DIR, str(req.session_hash))
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(temp_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
import traceback
traceback.print_exc() # Print the full stack trace for debugging
return None, f"Error generating 3D model: {str(e)}"
def process_example_pipeline(example_prompt):
return example_prompt
def create_interface():
model_status = "ℹ️ Models will be loaded on demand"
with gr.Blocks(css=css) as demo:
# Move session handlers INSIDE the Blocks context
demo.load(fn=start_session)
demo.unload(fn=end_session)
gr.Info(model_status)
# State for storing 3D model data
output_state = gr.State(None)
with gr.Column(elem_id="col-container"):
gr.Markdown("# Text to 3D\nFocusing on product creation\nUsing Mistral-7B + FLUX.1-dev + Trellis")
prompt = gr.Text(
show_label=False,
max_lines=1,
placeholder="Enter basic object prompt",
container=False,
)
prompt_button = gr.Button("Refine prompt with Mistral")
refined_prompt = gr.Text(
show_label=False,
max_lines=10,
placeholder="Detailed object prompt",
container=False,
max_length=2048,
)
visual_button = gr.Button("Create visual with Flux")
generated_image = gr.Image(show_label=False, format="png", image_mode="RGBA", type="pil", height=300)
gen3d_button = gr.Button("Create 3D visual with Trellis")
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
message_box = gr.Textbox(
label="Status Messages",
interactive=False,
placeholder="Status messages will appear here",
)
# Accordion sections for advanced settings
with gr.Accordion("Advanced Settings", open=False):
with gr.Tab("Mistral"):
# Mistral settings
temperature = gr.Slider(
label="Temperature",
value=DEFAULT_TEMPERATURE,
minimum=0.0,
maximum=1.0,
step=0.05,
info="Higher values produce more diverse outputs",
)
system_prompt = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=10,
info="Instructions for the Mistral model"
)
with gr.Tab("Flux"):
# Flux settings
flux_seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=DEFAULT_SEED)
flux_randomize_seed = gr.Checkbox(label="Randomize seed", value=DEFAULT_RANDOMIZE_SEED)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=DEFAULT_NUM_INFERENCE_STEPS,
)
with gr.Tab("3D Generation Settings"):
trellis_seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
trellis_randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Examples(
examples=examples,
fn=process_example_pipeline,
inputs=[prompt],
outputs=[prompt],
cache_examples=True,
)
gr.on(
triggers=[prompt_button.click, prompt.submit],
fn=refine_prompt,
inputs=[prompt, system_prompt],
outputs=[refined_prompt, message_box]
)
gr.on(
triggers=[visual_button.click],
fn=generate_image,
inputs=[refined_prompt, flux_seed, flux_randomize_seed, width, height, num_inference_steps],
outputs=[generated_image, message_box]
)
gr.on(
triggers=[gen3d_button.click],
fn=image_to_3d,
inputs=[generated_image, trellis_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_state, video_output],
)
return demo
if __name__ == "__main__":
trellis = get_trellis_pipeline()
trellis.cuda()
demo = create_interface()
demo.launch(debug=True)