Spaces:
Configuration error
Configuration error
Create handler.py
Browse files- handler.py +67 -0
handler.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pymongo import MongoClient
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
import boto3
|
5 |
+
import os
|
6 |
+
|
7 |
+
#----------------------------------------------------------------------------
|
8 |
+
def lambda_handler(event, context):
|
9 |
+
# S3'tan Python versiyonlarını alma
|
10 |
+
python_versions = _known_python_versions()
|
11 |
+
|
12 |
+
# Kullanıcıdan gelen inputu işleme
|
13 |
+
user_input = event.get("input")
|
14 |
+
if not user_input:
|
15 |
+
return {
|
16 |
+
"statusCode": 400,
|
17 |
+
"body": json.dumps("Input data is required")
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
save_user_input_to_mongodb({"input": user_input})
|
22 |
+
refenece_data_mongodb({})
|
23 |
+
|
24 |
+
# Similarity hesaplama
|
25 |
+
similarity_score = calculate_similarity(user_input, "Referans metin")
|
26 |
+
|
27 |
+
# Sonuçları döndürme
|
28 |
+
return {
|
29 |
+
"statusCode": 200,
|
30 |
+
"body": json.dumps({
|
31 |
+
"python_versions": python_versions,
|
32 |
+
"similarity_score": similarity_score
|
33 |
+
})
|
34 |
+
}
|
35 |
+
#-------------------------------------------------------------------------------
|
36 |
+
#s3 keywords'ü oluşturma gerekli
|
37 |
+
def _known_python_versions():
|
38 |
+
"""Get current list from S3."""
|
39 |
+
try:
|
40 |
+
s3 = boto3.resource("s3")
|
41 |
+
obj = s3.Object(os.environ["S3_BUCKET"], "python/versions.json")
|
42 |
+
content = obj.get()["Body"].read().decode("utf-8")
|
43 |
+
except botocore.exceptions.ClientError:
|
44 |
+
print("Key not found, using empty list")
|
45 |
+
content = '{"python_versions":[]}'
|
46 |
+
return json.loads(content)
|
47 |
+
|
48 |
+
def save_user_input_to_mongodb(input_data):
|
49 |
+
client = MongoClient(os.environ["MONGODB_URI"])
|
50 |
+
db = client["EgitimDatabase"]
|
51 |
+
collection = db["input"]
|
52 |
+
collection.insert_one(input_data)
|
53 |
+
client.close()
|
54 |
+
|
55 |
+
def refenece_data_mongodb(reference_data):
|
56 |
+
client = MongoClient(os.environ["MONGODB_URI"])
|
57 |
+
db = client["EgitimDatabase"]
|
58 |
+
collection = db["test"]
|
59 |
+
collection.insert_one(reference_data)
|
60 |
+
client.close()
|
61 |
+
#--------------------------------------------------------------------------------
|
62 |
+
def calculate_similarity(text1, text2):
|
63 |
+
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
64 |
+
embedding1 = model.encode(text1, convert_to_tensor=True)
|
65 |
+
embedding2 = model.encode(text2, convert_to_tensor=True)
|
66 |
+
similarity_score = util.pytorch_cos_sim(embedding1, embedding2)
|
67 |
+
return similarity_score.item()
|