Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,74 @@
|
|
1 |
-
# π§ Install dependencies
|
2 |
# !pip install gradio pandas sentence-transformers
|
3 |
|
4 |
-
import
|
|
|
|
|
5 |
import pandas as pd
|
|
|
6 |
from sentence_transformers import SentenceTransformer, util
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
df.fillna("", inplace=True)
|
13 |
|
14 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
df["profile_text"] = df["Name"] + " - " + df["Platform"] + " - " + df["Niche"] + " - " + df["Country"]
|
16 |
|
17 |
-
# Load embedding model
|
|
|
18 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
19 |
|
20 |
-
# Precompute embeddings
|
|
|
21 |
influencer_embeddings = model.encode(df["profile_text"].tolist(), convert_to_tensor=True)
|
22 |
|
23 |
-
|
|
|
24 |
def recommend_influencers(brand_description):
|
25 |
query_embedding = model.encode(brand_description, convert_to_tensor=True)
|
26 |
cosine_scores = util.pytorch_cos_sim(query_embedding, influencer_embeddings)[0]
|
27 |
top_indices = cosine_scores.topk(3).indices.tolist()
|
28 |
-
|
29 |
recommendations = []
|
30 |
for idx in top_indices:
|
31 |
row = df.iloc[idx]
|
@@ -39,7 +82,6 @@ def recommend_influencers(brand_description):
|
|
39 |
})
|
40 |
return recommendations
|
41 |
|
42 |
-
# πΌοΈ Gradio UI
|
43 |
def format_output(brand_input):
|
44 |
recs = recommend_influencers(brand_input)
|
45 |
output = ""
|
@@ -53,7 +95,7 @@ def format_output(brand_input):
|
|
53 |
|
54 |
demo = gr.Interface(
|
55 |
fn=format_output,
|
56 |
-
inputs=gr.Textbox(label="Enter your brand description
|
57 |
outputs=gr.Markdown(label="Top 3 Influencer Matches"),
|
58 |
title="InfluMatch: Influencer Recommender",
|
59 |
description="Describe your brand or campaign and get 3 matching influencer suggestions.",
|
|
|
1 |
+
# π§ Install dependencies (uncomment if running locally)
|
2 |
# !pip install gradio pandas sentence-transformers
|
3 |
|
4 |
+
import os
|
5 |
+
import zipfile
|
6 |
+
import requests
|
7 |
import pandas as pd
|
8 |
+
import gradio as gr
|
9 |
from sentence_transformers import SentenceTransformer, util
|
10 |
|
11 |
+
### STEP 1: Download and unzip the influencer dataset from Hugging Face
|
12 |
+
|
13 |
+
# Replace this with your actual dataset ZIP URL
|
14 |
+
url = "https://huggingface.co/datasets/your-username/influencer-dataset-merged/resolve/main/top_100_influencers.zip"
|
15 |
+
zip_path = "top_100_influencers.zip"
|
16 |
+
|
17 |
+
# Download zip file if not already present
|
18 |
+
if not os.path.exists(zip_path):
|
19 |
+
print("π₯ Downloading influencer dataset...")
|
20 |
+
r = requests.get(url)
|
21 |
+
with open(zip_path, "wb") as f:
|
22 |
+
f.write(r.content)
|
23 |
+
|
24 |
+
# Unzip the file into a folder
|
25 |
+
unzip_dir = "influencer_data"
|
26 |
+
if not os.path.exists(unzip_dir):
|
27 |
+
print("π¦ Unzipping dataset...")
|
28 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
29 |
+
zip_ref.extractall(unzip_dir)
|
30 |
+
|
31 |
+
### STEP 2: Merge all CSVs into one
|
32 |
|
33 |
+
print("π Merging influencer files...")
|
34 |
+
all_dfs = []
|
35 |
+
for file in os.listdir(unzip_dir):
|
36 |
+
if file.endswith(".csv"):
|
37 |
+
df = pd.read_csv(os.path.join(unzip_dir, file))
|
38 |
+
df["Source File"] = file # Optional: keep track of file origin
|
39 |
+
all_dfs.append(df)
|
40 |
+
|
41 |
+
df = pd.concat(all_dfs, ignore_index=True)
|
42 |
+
|
43 |
+
# Basic cleanup
|
44 |
+
df.drop_duplicates(inplace=True)
|
45 |
+
df.dropna(subset=["Name", "Niche"], inplace=True)
|
46 |
df.fillna("", inplace=True)
|
47 |
|
48 |
+
# Save combined dataset (optional)
|
49 |
+
df.to_csv("top_100_influencers_combined.csv", index=False)
|
50 |
+
print("β
Combined dataset ready!")
|
51 |
+
|
52 |
+
### STEP 3: Build the recommender engine
|
53 |
+
|
54 |
+
# Combine fields for semantic embedding
|
55 |
df["profile_text"] = df["Name"] + " - " + df["Platform"] + " - " + df["Niche"] + " - " + df["Country"]
|
56 |
|
57 |
+
# Load sentence embedding model
|
58 |
+
print("π§ Loading embedding model...")
|
59 |
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
60 |
|
61 |
+
# Precompute influencer embeddings
|
62 |
+
print("π’ Encoding influencer profiles...")
|
63 |
influencer_embeddings = model.encode(df["profile_text"].tolist(), convert_to_tensor=True)
|
64 |
|
65 |
+
### STEP 4: Define similarity search + UI
|
66 |
+
|
67 |
def recommend_influencers(brand_description):
|
68 |
query_embedding = model.encode(brand_description, convert_to_tensor=True)
|
69 |
cosine_scores = util.pytorch_cos_sim(query_embedding, influencer_embeddings)[0]
|
70 |
top_indices = cosine_scores.topk(3).indices.tolist()
|
71 |
+
|
72 |
recommendations = []
|
73 |
for idx in top_indices:
|
74 |
row = df.iloc[idx]
|
|
|
82 |
})
|
83 |
return recommendations
|
84 |
|
|
|
85 |
def format_output(brand_input):
|
86 |
recs = recommend_influencers(brand_input)
|
87 |
output = ""
|
|
|
95 |
|
96 |
demo = gr.Interface(
|
97 |
fn=format_output,
|
98 |
+
inputs=gr.Textbox(label="Enter your brand or campaign description", placeholder="e.g. Sustainable fashion for Gen Z"),
|
99 |
outputs=gr.Markdown(label="Top 3 Influencer Matches"),
|
100 |
title="InfluMatch: Influencer Recommender",
|
101 |
description="Describe your brand or campaign and get 3 matching influencer suggestions.",
|