|
import cv2 |
|
import numpy as np |
|
import gradio as gr |
|
import onnxruntime as rt |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
def predict(img): |
|
img = img.astype(np.float32) / 255 |
|
s = 768 |
|
h, w = img.shape[:-1] |
|
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) |
|
ph, pw = s - h, s - w |
|
img_input = np.zeros([s, s, 3], dtype=np.float32) |
|
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) |
|
img_input = np.transpose(img_input, (2, 0, 1)) |
|
img_input = img_input[np.newaxis, :] |
|
pred = model.run(None, {"img": img_input})[0].item() |
|
return pred |
|
|
|
|
|
if __name__ == "__main__": |
|
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx") |
|
model = rt.InferenceSession(model_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) |
|
examples = [[f"examples/{x:02d}.jpg"] for x in range(0, 2)] |
|
app = gr.Interface(predict, gr.Image(label="input image"), gr.Number(label="score"),title="Anime Aesthetic Predict", |
|
allow_flagging="never", examples=examples, cache_examples=False) |
|
app.launch() |
|
|