Spaces:
Paused
Paused
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# ---------------------------------------------------------------------- | |
# Helper to read a secret (fallback is useful when you run locally) | |
# ---------------------------------------------------------------------- | |
def _secret(key: str, fallback: str = "") -> str: | |
return os.getenv(key, fallback) | |
# ---------------------------------------------------------------------- | |
# Core chat logic – system prompt comes from the secret `prec_chat` | |
# ---------------------------------------------------------------------- | |
def respond( | |
message: str, | |
history: list[dict[str, str]], | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
hf_token: gr.OAuthToken, | |
): | |
""" | |
Generate a response using the HuggingFace Inference API. | |
The system prompt is taken from the secret **prec_chat**. | |
Users cannot edit it from the UI. | |
""" | |
# 1️⃣ Load the system prompt (fallback = generic assistant) | |
system_message = _secret("prec_chat", "You are a helpful assistant.") | |
# 2️⃣ Initialise the HF inference client | |
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") | |
# 3️⃣ Build the message list for the chat‑completion endpoint | |
messages = [{"role": "system", "content": system_message}] | |
messages.extend(history) # previous turns | |
messages.append({"role": "user", "content": message}) # current query | |
# 4️⃣ Stream the response back to the UI | |
response = "" | |
for chunk in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
choices = chunk.choices | |
token = "" | |
if choices and choices[0].delta.content: | |
token = choices[0].delta.content | |
response += token | |
yield response | |
# ---------------------------------------------------------------------- | |
# UI – the system‑prompt textbox has been removed. | |
# ---------------------------------------------------------------------- | |
chatbot = gr.ChatInterface( | |
respond, | |
type="messages", | |
additional_inputs=[ | |
# Only generation parameters are exposed now. | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top‑p (nucleus sampling)", | |
), | |
], | |
) | |
# ---------------------------------------------------------------------- | |
# Assemble the Blocks layout (no LoginButton – we use basic auth) | |
# ---------------------------------------------------------------------- | |
with gr.Blocks() as demo: | |
chatbot.render() | |
# ---------------------------------------------------------------------- | |
# Launch – protect the UI with the credentials from secrets. | |
# ---------------------------------------------------------------------- | |
if __name__ == "__main__": | |
# Pull the allowed credentials from secrets (fail fast if missing) | |
allowed_user = _secret("CHAT_USER") | |
allowed_pass = _secret("CHAT_PASS") | |
if not allowed_user or not allowed_pass: | |
raise RuntimeError( | |
"Authentication credentials not found in secrets. " | |
"Add CHAT_USER and CHAT_PASS to secrets.toml (or via the HF Spaces UI)." | |
) | |
demo.launch( | |
auth=(allowed_user, allowed_pass), # <-- Gradio's built‑in basic auth | |
# Turn off server‑side rendering to avoid the i18n locale error | |
ssr_mode=False, | |
# In a remote environment (HF Spaces, Docker, cloud VM) you need a shareable link: | |
share=True, # <-- remove if you run locally and can reach http://127.0.0.1:7860 | |
# Optional – listen on all interfaces (useful inside containers) | |
server_name="0.0.0.0", | |
) |