Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from textblob import TextBlob | |
| from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer | |
| from flair.models import TextClassifier | |
| from flair.data import Sentence | |
| import matplotlib.pyplot as plt | |
| # Function to perform sentiment analysis using TextBlob model | |
| def textblob_sentiment(text): | |
| blob = TextBlob(text) | |
| return blob.sentiment.polarity | |
| # Function to perform sentiment analysis using VADER model | |
| def vader_sentiment(text): | |
| analyzer = SentimentIntensityAnalyzer() | |
| scores = analyzer.polarity_scores(text) | |
| return scores['compound'] | |
| # Function to perform sentiment analysis using Flair model | |
| def flair_sentiment(text): | |
| classifier = TextClassifier.load('en-sentiment') | |
| sentence = Sentence(text) | |
| classifier.predict(sentence) | |
| if len(sentence.labels) > 0: | |
| if sentence.labels[0].value == 'POSITIVE': | |
| return 1.0 | |
| elif sentence.labels[0].value == 'NEGATIVE': | |
| return -1.0 | |
| return 0.0 | |
| # Set up the Streamlit app | |
| st.title('Sentiment Analysis App') | |
| # Get user input | |
| text = st.text_input('Enter text to analyze') | |
| # Perform sentiment analysis using each model | |
| textblob_score = textblob_sentiment(text) | |
| vader_score = vader_sentiment(text) | |
| flair_score = flair_sentiment(text) | |
| # Display the sentiment scores | |
| st.write('TextBlob score:', textblob_score) | |
| st.write('VADER score:', vader_score) | |
| st.write('Flair score:', flair_score) | |
| # Create a graph of the sentiment scores | |
| fig, ax = plt.subplots() | |
| ax.bar(['TextBlob', 'VADER', 'Flair'], [textblob_score, vader_score, flair_score]) | |
| ax.axhline(y=0, color='gray', linestyle='--') | |
| ax.set_title('Sentiment Scores') | |
| st.pyplot(fig) |