Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partial | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.utils import USE_PEFT_BACKEND | |
from diffusers.models.activations import get_activation | |
from diffusers.models.downsampling import ( # noqa | |
Downsample1D, | |
Downsample2D, | |
FirDownsample2D, | |
KDownsample2D, | |
downsample_2d, | |
) | |
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear | |
from diffusers.models.normalization import AdaGroupNorm | |
from diffusers.models.upsampling import ( # noqa | |
FirUpsample2D, | |
KUpsample2D, | |
Upsample1D, | |
Upsample2D, | |
upfirdn2d_native, | |
upsample_2d, | |
) | |
from foleycrafter.models.auffusion.attention_processor import SpatialNorm | |
class ResnetBlock2D(nn.Module): | |
r""" | |
A Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. | |
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. | |
groups_out (`int`, *optional*, default to None): | |
The number of groups to use for the second normalization layer. if set to None, same as `groups`. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. | |
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. | |
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or | |
"ada_group" for a stronger conditioning with scale and shift. | |
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see | |
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. | |
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. | |
use_in_shortcut (`bool`, *optional*, default to `True`): | |
If `True`, add a 1x1 nn.conv2d layer for skip-connection. | |
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. | |
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. | |
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the | |
`conv_shortcut` output. | |
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. | |
If None, same as `out_channels`. | |
""" | |
def __init__( | |
self, | |
*, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
conv_shortcut: bool = False, | |
dropout: float = 0.0, | |
temb_channels: int = 512, | |
groups: int = 32, | |
groups_out: Optional[int] = None, | |
pre_norm: bool = True, | |
eps: float = 1e-6, | |
non_linearity: str = "swish", | |
skip_time_act: bool = False, | |
time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial | |
kernel: Optional[torch.FloatTensor] = None, | |
output_scale_factor: float = 1.0, | |
use_in_shortcut: Optional[bool] = None, | |
up: bool = False, | |
down: bool = False, | |
conv_shortcut_bias: bool = True, | |
conv_2d_out_channels: Optional[int] = None, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.up = up | |
self.down = down | |
self.output_scale_factor = output_scale_factor | |
self.time_embedding_norm = time_embedding_norm | |
self.skip_time_act = skip_time_act | |
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear | |
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv | |
if groups_out is None: | |
groups_out = groups | |
if self.time_embedding_norm == "ada_group": | |
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) | |
elif self.time_embedding_norm == "spatial": | |
self.norm1 = SpatialNorm(in_channels, temb_channels) | |
else: | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
if self.time_embedding_norm == "default": | |
self.time_emb_proj = linear_cls(temb_channels, out_channels) | |
elif self.time_embedding_norm == "scale_shift": | |
self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels) | |
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
self.time_emb_proj = None | |
else: | |
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
else: | |
self.time_emb_proj = None | |
if self.time_embedding_norm == "ada_group": | |
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) | |
elif self.time_embedding_norm == "spatial": | |
self.norm2 = SpatialNorm(out_channels, temb_channels) | |
else: | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
conv_2d_out_channels = conv_2d_out_channels or out_channels | |
self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) | |
self.nonlinearity = get_activation(non_linearity) | |
self.upsample = self.downsample = None | |
if self.up: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") | |
else: | |
self.upsample = Upsample2D(in_channels, use_conv=False) | |
elif self.down: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) | |
else: | |
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") | |
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = conv_cls( | |
in_channels, | |
conv_2d_out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
bias=conv_shortcut_bias, | |
) | |
def forward( | |
self, | |
input_tensor: torch.FloatTensor, | |
temb: torch.FloatTensor, | |
scale: float = 1.0, | |
) -> torch.FloatTensor: | |
hidden_states = input_tensor | |
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
hidden_states = self.norm1(hidden_states, temb) | |
else: | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = ( | |
self.upsample(input_tensor, scale=scale) | |
if isinstance(self.upsample, Upsample2D) | |
else self.upsample(input_tensor) | |
) | |
hidden_states = ( | |
self.upsample(hidden_states, scale=scale) | |
if isinstance(self.upsample, Upsample2D) | |
else self.upsample(hidden_states) | |
) | |
elif self.downsample is not None: | |
input_tensor = ( | |
self.downsample(input_tensor, scale=scale) | |
if isinstance(self.downsample, Downsample2D) | |
else self.downsample(input_tensor) | |
) | |
hidden_states = ( | |
self.downsample(hidden_states, scale=scale) | |
if isinstance(self.downsample, Downsample2D) | |
else self.downsample(hidden_states) | |
) | |
hidden_states = self.conv1(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv1(hidden_states) | |
if self.time_emb_proj is not None: | |
if not self.skip_time_act: | |
temb = self.nonlinearity(temb) | |
temb = ( | |
self.time_emb_proj(temb, scale)[:, :, None, None] | |
if not USE_PEFT_BACKEND | |
# NOTE: Maybe we can use different prompt in different time | |
else self.time_emb_proj(temb)[:, :, None, None] | |
) | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
hidden_states = self.norm2(hidden_states, temb) | |
else: | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = ( | |
self.conv_shortcut(input_tensor, scale) if not USE_PEFT_BACKEND else self.conv_shortcut(input_tensor) | |
) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
# unet_rl.py | |
def rearrange_dims(tensor: torch.Tensor) -> torch.Tensor: | |
if len(tensor.shape) == 2: | |
return tensor[:, :, None] | |
if len(tensor.shape) == 3: | |
return tensor[:, :, None, :] | |
elif len(tensor.shape) == 4: | |
return tensor[:, :, 0, :] | |
else: | |
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") | |
class Conv1dBlock(nn.Module): | |
""" | |
Conv1d --> GroupNorm --> Mish | |
Parameters: | |
inp_channels (`int`): Number of input channels. | |
out_channels (`int`): Number of output channels. | |
kernel_size (`int` or `tuple`): Size of the convolving kernel. | |
n_groups (`int`, default `8`): Number of groups to separate the channels into. | |
activation (`str`, defaults to `mish`): Name of the activation function. | |
""" | |
def __init__( | |
self, | |
inp_channels: int, | |
out_channels: int, | |
kernel_size: Union[int, Tuple[int, int]], | |
n_groups: int = 8, | |
activation: str = "mish", | |
): | |
super().__init__() | |
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2) | |
self.group_norm = nn.GroupNorm(n_groups, out_channels) | |
self.mish = get_activation(activation) | |
def forward(self, inputs: torch.Tensor) -> torch.Tensor: | |
intermediate_repr = self.conv1d(inputs) | |
intermediate_repr = rearrange_dims(intermediate_repr) | |
intermediate_repr = self.group_norm(intermediate_repr) | |
intermediate_repr = rearrange_dims(intermediate_repr) | |
output = self.mish(intermediate_repr) | |
return output | |
# unet_rl.py | |
class ResidualTemporalBlock1D(nn.Module): | |
""" | |
Residual 1D block with temporal convolutions. | |
Parameters: | |
inp_channels (`int`): Number of input channels. | |
out_channels (`int`): Number of output channels. | |
embed_dim (`int`): Embedding dimension. | |
kernel_size (`int` or `tuple`): Size of the convolving kernel. | |
activation (`str`, defaults `mish`): It is possible to choose the right activation function. | |
""" | |
def __init__( | |
self, | |
inp_channels: int, | |
out_channels: int, | |
embed_dim: int, | |
kernel_size: Union[int, Tuple[int, int]] = 5, | |
activation: str = "mish", | |
): | |
super().__init__() | |
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size) | |
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size) | |
self.time_emb_act = get_activation(activation) | |
self.time_emb = nn.Linear(embed_dim, out_channels) | |
self.residual_conv = ( | |
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() | |
) | |
def forward(self, inputs: torch.Tensor, t: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
inputs : [ batch_size x inp_channels x horizon ] | |
t : [ batch_size x embed_dim ] | |
returns: | |
out : [ batch_size x out_channels x horizon ] | |
""" | |
t = self.time_emb_act(t) | |
t = self.time_emb(t) | |
out = self.conv_in(inputs) + rearrange_dims(t) | |
out = self.conv_out(out) | |
return out + self.residual_conv(inputs) | |
class TemporalConvLayer(nn.Module): | |
""" | |
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from: | |
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016 | |
Parameters: | |
in_dim (`int`): Number of input channels. | |
out_dim (`int`): Number of output channels. | |
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. | |
""" | |
def __init__( | |
self, | |
in_dim: int, | |
out_dim: Optional[int] = None, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
): | |
super().__init__() | |
out_dim = out_dim or in_dim | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
# conv layers | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, in_dim), | |
nn.SiLU(), | |
nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)), | |
) | |
self.conv2 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), | |
) | |
self.conv3 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), | |
) | |
self.conv4 = nn.Sequential( | |
nn.GroupNorm(norm_num_groups, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), | |
) | |
# zero out the last layer params,so the conv block is identity | |
nn.init.zeros_(self.conv4[-1].weight) | |
nn.init.zeros_(self.conv4[-1].bias) | |
def forward(self, hidden_states: torch.Tensor, num_frames: int = 1) -> torch.Tensor: | |
hidden_states = ( | |
hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4) | |
) | |
identity = hidden_states | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
hidden_states = self.conv3(hidden_states) | |
hidden_states = self.conv4(hidden_states) | |
hidden_states = identity + hidden_states | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape( | |
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:] | |
) | |
return hidden_states | |
class TemporalResnetBlock(nn.Module): | |
r""" | |
A Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
temb_channels: int = 512, | |
eps: float = 1e-6, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
kernel_size = (3, 1, 1) | |
padding = [k // 2 for k in kernel_size] | |
self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = nn.Conv3d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=padding, | |
) | |
if temb_channels is not None: | |
self.time_emb_proj = nn.Linear(temb_channels, out_channels) | |
else: | |
self.time_emb_proj = None | |
self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(0.0) | |
self.conv2 = nn.Conv3d( | |
out_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=1, | |
padding=padding, | |
) | |
self.nonlinearity = get_activation("silu") | |
self.use_in_shortcut = self.in_channels != out_channels | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = nn.Conv3d( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
) | |
def forward(self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if self.time_emb_proj is not None: | |
temb = self.nonlinearity(temb) | |
temb = self.time_emb_proj(temb)[:, :, :, None, None] | |
temb = temb.permute(0, 2, 1, 3, 4) | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = input_tensor + hidden_states | |
return output_tensor | |
# VideoResBlock | |
class SpatioTemporalResBlock(nn.Module): | |
r""" | |
A SpatioTemporal Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the spatial resenet. | |
temporal_eps (`float`, *optional*, defaults to `eps`): The epsilon to use for the temporal resnet. | |
merge_factor (`float`, *optional*, defaults to `0.5`): The merge factor to use for the temporal mixing. | |
merge_strategy (`str`, *optional*, defaults to `learned_with_images`): | |
The merge strategy to use for the temporal mixing. | |
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`): | |
If `True`, switch the spatial and temporal mixing. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: Optional[int] = None, | |
temb_channels: int = 512, | |
eps: float = 1e-6, | |
temporal_eps: Optional[float] = None, | |
merge_factor: float = 0.5, | |
merge_strategy="learned_with_images", | |
switch_spatial_to_temporal_mix: bool = False, | |
): | |
super().__init__() | |
self.spatial_res_block = ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=eps, | |
) | |
self.temporal_res_block = TemporalResnetBlock( | |
in_channels=out_channels if out_channels is not None else in_channels, | |
out_channels=out_channels if out_channels is not None else in_channels, | |
temb_channels=temb_channels, | |
eps=temporal_eps if temporal_eps is not None else eps, | |
) | |
self.time_mixer = AlphaBlender( | |
alpha=merge_factor, | |
merge_strategy=merge_strategy, | |
switch_spatial_to_temporal_mix=switch_spatial_to_temporal_mix, | |
) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
): | |
num_frames = image_only_indicator.shape[-1] | |
hidden_states = self.spatial_res_block(hidden_states, temb) | |
batch_frames, channels, height, width = hidden_states.shape | |
batch_size = batch_frames // num_frames | |
hidden_states_mix = ( | |
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) | |
) | |
hidden_states = ( | |
hidden_states[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) | |
) | |
if temb is not None: | |
temb = temb.reshape(batch_size, num_frames, -1) | |
hidden_states = self.temporal_res_block(hidden_states, temb) | |
hidden_states = self.time_mixer( | |
x_spatial=hidden_states_mix, | |
x_temporal=hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) | |
return hidden_states | |
class AlphaBlender(nn.Module): | |
r""" | |
A module to blend spatial and temporal features. | |
Parameters: | |
alpha (`float`): The initial value of the blending factor. | |
merge_strategy (`str`, *optional*, defaults to `learned_with_images`): | |
The merge strategy to use for the temporal mixing. | |
switch_spatial_to_temporal_mix (`bool`, *optional*, defaults to `False`): | |
If `True`, switch the spatial and temporal mixing. | |
""" | |
strategies = ["learned", "fixed", "learned_with_images"] | |
def __init__( | |
self, | |
alpha: float, | |
merge_strategy: str = "learned_with_images", | |
switch_spatial_to_temporal_mix: bool = False, | |
): | |
super().__init__() | |
self.merge_strategy = merge_strategy | |
self.switch_spatial_to_temporal_mix = switch_spatial_to_temporal_mix # For TemporalVAE | |
if merge_strategy not in self.strategies: | |
raise ValueError(f"merge_strategy needs to be in {self.strategies}") | |
if self.merge_strategy == "fixed": | |
self.register_buffer("mix_factor", torch.Tensor([alpha])) | |
elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images": | |
self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))) | |
else: | |
raise ValueError(f"Unknown merge strategy {self.merge_strategy}") | |
def get_alpha(self, image_only_indicator: torch.Tensor, ndims: int) -> torch.Tensor: | |
if self.merge_strategy == "fixed": | |
alpha = self.mix_factor | |
elif self.merge_strategy == "learned": | |
alpha = torch.sigmoid(self.mix_factor) | |
elif self.merge_strategy == "learned_with_images": | |
if image_only_indicator is None: | |
raise ValueError("Please provide image_only_indicator to use learned_with_images merge strategy") | |
alpha = torch.where( | |
image_only_indicator.bool(), | |
torch.ones(1, 1, device=image_only_indicator.device), | |
torch.sigmoid(self.mix_factor)[..., None], | |
) | |
# (batch, channel, frames, height, width) | |
if ndims == 5: | |
alpha = alpha[:, None, :, None, None] | |
# (batch*frames, height*width, channels) | |
elif ndims == 3: | |
alpha = alpha.reshape(-1)[:, None, None] | |
else: | |
raise ValueError(f"Unexpected ndims {ndims}. Dimensions should be 3 or 5") | |
else: | |
raise NotImplementedError | |
return alpha | |
def forward( | |
self, | |
x_spatial: torch.Tensor, | |
x_temporal: torch.Tensor, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
alpha = self.get_alpha(image_only_indicator, x_spatial.ndim) | |
alpha = alpha.to(x_spatial.dtype) | |
if self.switch_spatial_to_temporal_mix: | |
alpha = 1.0 - alpha | |
x = alpha * x_spatial + (1.0 - alpha) * x_temporal | |
return x |