Spaces:
Running
Running
Yimu Pan
commited on
Commit
·
243f893
1
Parent(s):
e6469bc
add app file
Browse files- app.py +137 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import onnxruntime as ort
|
| 5 |
+
from PIL import Image, ImageDraw
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
|
| 8 |
+
# Retrieve the token from environment variables
|
| 9 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 10 |
+
|
| 11 |
+
# Download the private model.onnx file
|
| 12 |
+
model_path = hf_hub_download(
|
| 13 |
+
repo_id="ymp5078/RulerNet",
|
| 14 |
+
filename="model.onnx",
|
| 15 |
+
use_auth_token=hf_token
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# ---- Load ONNX Model ----
|
| 19 |
+
ort_session = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
| 20 |
+
|
| 21 |
+
# ---- Utility Function ----
|
| 22 |
+
def outward_cumsum(initial_point, line_direction, directions, n):
|
| 23 |
+
left_directions = directions[n < 0][::-1]
|
| 24 |
+
right_directions = directions[n >= 0]
|
| 25 |
+
|
| 26 |
+
left_increments = -np.expand_dims(left_directions, axis=1) * line_direction
|
| 27 |
+
right_increments = np.expand_dims(right_directions, axis=1) * line_direction
|
| 28 |
+
|
| 29 |
+
zero = np.zeros((1, 2), dtype=initial_point.dtype)
|
| 30 |
+
left_cumulative = np.cumsum(np.vstack([zero, left_increments]), axis=0)
|
| 31 |
+
right_cumulative = np.cumsum(np.vstack([zero, right_increments]), axis=0)
|
| 32 |
+
|
| 33 |
+
left_points = initial_point + left_cumulative
|
| 34 |
+
right_points = initial_point + right_cumulative
|
| 35 |
+
|
| 36 |
+
extended_points = np.vstack([left_points[::-1], right_points[1:]])
|
| 37 |
+
return extended_points
|
| 38 |
+
|
| 39 |
+
# ---- Image Preprocessing ----
|
| 40 |
+
def preprocess_image(pil_img):
|
| 41 |
+
image = np.array(pil_img).astype(np.float32) / 255.0
|
| 42 |
+
if image.ndim == 2:
|
| 43 |
+
image = np.stack([image]*3, axis=-1)
|
| 44 |
+
elif image.shape[2] == 4:
|
| 45 |
+
image = image[:, :, :3]
|
| 46 |
+
|
| 47 |
+
resized = np.zeros((768, 768, 3), dtype=np.float32)
|
| 48 |
+
h, w = image.shape[:2]
|
| 49 |
+
scale = min(768 / w, 768 / h)
|
| 50 |
+
new_w, new_h = int(w * scale), int(h * scale)
|
| 51 |
+
image_resized = np.array(Image.fromarray((image * 255).astype(np.uint8)).resize((new_w, new_h))).astype(np.float32) / 255.0
|
| 52 |
+
top = (768 - new_h) // 2
|
| 53 |
+
left = (768 - new_w) // 2
|
| 54 |
+
resized[top:top+new_h, left:left+new_w] = image_resized
|
| 55 |
+
|
| 56 |
+
input_tensor = np.transpose(resized, (2, 0, 1))[np.newaxis, ...].copy()
|
| 57 |
+
return input_tensor, (top, left, new_h, new_w)
|
| 58 |
+
|
| 59 |
+
# ---- Main Inference and Drawing ----
|
| 60 |
+
def infer_and_draw(image_pil):
|
| 61 |
+
image_tensor, _ = preprocess_image(image_pil)
|
| 62 |
+
ort_inputs = {"input": image_tensor}
|
| 63 |
+
ort_outs = ort_session.run(None, ort_inputs)
|
| 64 |
+
|
| 65 |
+
left_point_2d_reconstructed = ort_outs[0][0] # shape: (2,)
|
| 66 |
+
dist = ort_outs[1][0][0] # scalar
|
| 67 |
+
ratio = ort_outs[2][0][0] # scalar
|
| 68 |
+
direction = ort_outs[3][0] # shape: (2,)
|
| 69 |
+
points_info = ort_outs[4][0]
|
| 70 |
+
|
| 71 |
+
min_x, min_y, max_x, max_y = points_info[1:].tolist()
|
| 72 |
+
num_points = int(points_info[0])
|
| 73 |
+
|
| 74 |
+
n = np.arange(-num_points, num_points + 1)
|
| 75 |
+
directions = (ratio ** n) * dist
|
| 76 |
+
extended_points = outward_cumsum(left_point_2d_reconstructed, direction, directions, n)
|
| 77 |
+
|
| 78 |
+
within_bounds = (
|
| 79 |
+
(extended_points[:, 0] >= min_x) & (extended_points[:, 0] <= max_x) &
|
| 80 |
+
(extended_points[:, 1] >= min_y) & (extended_points[:, 1] <= max_y)
|
| 81 |
+
)
|
| 82 |
+
best_generated_points = extended_points[within_bounds]
|
| 83 |
+
|
| 84 |
+
if len(best_generated_points) > 1:
|
| 85 |
+
diffs = np.linalg.norm(best_generated_points[:-1] - best_generated_points[1:], axis=1)
|
| 86 |
+
pred_pix_cm = np.nanmedian(diffs)
|
| 87 |
+
else:
|
| 88 |
+
pred_pix_cm = 0.0
|
| 89 |
+
|
| 90 |
+
# ---- Draw on image ----
|
| 91 |
+
np_img = (np.transpose(image_tensor[0], (1, 2, 0)) * 255).astype(np.uint8)
|
| 92 |
+
pil_img = Image.fromarray(np_img)
|
| 93 |
+
draw = ImageDraw.Draw(pil_img)
|
| 94 |
+
|
| 95 |
+
# Pixel grid overlay
|
| 96 |
+
grid_spacing = 50
|
| 97 |
+
width, height = pil_img.size
|
| 98 |
+
for x in range(0, width, grid_spacing):
|
| 99 |
+
draw.line([(x, 0), (x, height)], fill=(200, 200, 200), width=1)
|
| 100 |
+
for y in range(0, height, grid_spacing):
|
| 101 |
+
draw.line([(0, y), (width, y)], fill=(200, 200, 200), width=1)
|
| 102 |
+
|
| 103 |
+
r = 3
|
| 104 |
+
for x, y in best_generated_points:
|
| 105 |
+
draw.ellipse((x - r, y - r, x + r, y + r), fill="red")
|
| 106 |
+
|
| 107 |
+
x0, y0 = left_point_2d_reconstructed[0]
|
| 108 |
+
draw.ellipse((x0 - r, y0 - r, x0 + r, y0 + r), fill="blue")
|
| 109 |
+
|
| 110 |
+
text = f"Pix/cm: {pred_pix_cm:.2f}"
|
| 111 |
+
text_position = (10, 10)
|
| 112 |
+
text_size = draw.textbbox(text_position, text)
|
| 113 |
+
padding = 4
|
| 114 |
+
rect_coords = (
|
| 115 |
+
text_size[0] - padding,
|
| 116 |
+
text_size[1] - padding,
|
| 117 |
+
text_size[2] + padding,
|
| 118 |
+
text_size[3] + padding
|
| 119 |
+
)
|
| 120 |
+
draw.rectangle(rect_coords, fill="white")
|
| 121 |
+
draw.text(text_position, text, fill="black")
|
| 122 |
+
|
| 123 |
+
return pil_img, f"{pred_pix_cm:.2f}"
|
| 124 |
+
|
| 125 |
+
if __name__ == '__main__':
|
| 126 |
+
demo = gr.Interface(
|
| 127 |
+
fn=infer_and_draw,
|
| 128 |
+
inputs=gr.Image(type="pil"),
|
| 129 |
+
outputs=[
|
| 130 |
+
gr.Image(label="Generated Ruler Points"),
|
| 131 |
+
gr.Textbox(label="Predicted median pixel-per-centimeter value (with grid lines every 50 pixels):")
|
| 132 |
+
],
|
| 133 |
+
title="ONNX (CPU) Ruler Model Visualizer",
|
| 134 |
+
description="Upload an image to visualize ruler points generated by the ONNX model."
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
numpy
|
| 3 |
+
onnxruntime
|
| 4 |
+
Pillow
|
| 5 |
+
huggingface_hub
|