Spaces:
Running
on
Zero
Running
on
Zero
from queue import Queue | |
from threading import Thread | |
from typing import Optional | |
import numpy as np | |
import torch | |
from transformers import MusicgenMelodyForConditionalGeneration, AutoProcessor, set_seed | |
from transformers.generation.streamers import BaseStreamer | |
import gradio as gr | |
import io, wave | |
import spaces | |
from transformers import MusicgenMelodyForConditionalGeneration, MusicgenForConditionalGeneration, AutoProcessor, set_seed | |
from transformers.modeling_outputs import BaseModelOutput | |
from transformers.utils import logging | |
from transformers.generation.configuration_utils import GenerationConfig | |
from transformers.generation.logits_process import ClassifierFreeGuidanceLogitsProcessor, LogitsProcessorList | |
from transformers.generation.stopping_criteria import StoppingCriteriaList | |
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union | |
import copy | |
import torch | |
import torchaudio | |
from demucs import pretrained | |
from demucs.apply import apply_model | |
from demucs.audio import convert_audio | |
logger = logging.get_logger(__name__) | |
class MusicgenMelodyForLongFormConditionalGeneration(MusicgenMelodyForConditionalGeneration): | |
stride_longform = 750 | |
def _prepare_audio_encoder_kwargs_for_longform_generation( | |
self, audio_codes, model_kwargs,): | |
frames, bsz, codebooks, seq_len = audio_codes.shape | |
if frames != 1: | |
raise ValueError( | |
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " | |
"disabled by setting `chunk_length=None` in the audio encoder." | |
) | |
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) | |
model_kwargs["decoder_input_ids"] = decoder_input_ids | |
return model_kwargs | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
generation_config: Optional[GenerationConfig] = None, | |
logits_processor: Optional[LogitsProcessorList] = None, | |
stopping_criteria: Optional[StoppingCriteriaList] = None, | |
synced_gpus: Optional[bool] = None, | |
max_longform_generation_length: Optional[int] = 4000, | |
streamer: Optional["BaseStreamer"] = None, | |
**kwargs, | |
): | |
""" | |
Generates sequences of token ids for models with a language modeling head. | |
<Tip warning={true}> | |
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the | |
model's default generation configuration. You can override any `generation_config` by passing the corresponding | |
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. | |
For an overview of generation strategies and code examples, check out the [following | |
guide](./generation_strategies). | |
</Tip> | |
Parameters: | |
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): | |
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the | |
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` | |
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of | |
`input_ids`, `input_values`, `input_features`, or `pixel_values`. | |
generation_config (`~generation.GenerationConfig`, *optional*): | |
The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
passed to generate matching the attributes of `generation_config` will override them. If | |
`generation_config` is not provided, the default will be used, which had the following loading | |
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
default values, whose documentation should be checked to parameterize generation. | |
logits_processor (`LogitsProcessorList`, *optional*): | |
Custom logits processors that complement the default logits processors built from arguments and | |
generation config. If a logit processor is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
stopping_criteria (`StoppingCriteriaList`, *optional*): | |
Custom stopping criteria that complement the default stopping criteria built from arguments and a | |
generation config. If a stopping criteria is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
synced_gpus (`bool`, *optional*, defaults to `False`): | |
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) | |
streamer (`BaseStreamer`, *optional*): | |
Streamer object that will be used to stream the generated sequences. Generated tokens are passed | |
through `streamer.put(token_ids)` and the streamer is responsible for any further processing. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be | |
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder | |
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. | |
Return: | |
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` | |
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. | |
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GenerateDecoderOnlyOutput`], | |
- [`~generation.GenerateBeamDecoderOnlyOutput`] | |
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GenerateEncoderDecoderOutput`], | |
- [`~generation.GenerateBeamEncoderDecoderOutput`] | |
""" | |
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects | |
if generation_config is None: | |
generation_config = self.generation_config | |
generation_config = copy.deepcopy(generation_config) | |
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs | |
generation_config.validate() | |
self._validate_model_kwargs(model_kwargs.copy()) | |
# 2. Set generation parameters if not already defined | |
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() | |
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() | |
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: | |
if model_kwargs.get("attention_mask", None) is None: | |
logger.warning( | |
"The attention mask and the pad token id were not set. As a consequence, you may observe " | |
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." | |
) | |
eos_token_id = generation_config.eos_token_id | |
if isinstance(eos_token_id, list): | |
eos_token_id = eos_token_id[0] | |
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") | |
generation_config.pad_token_id = eos_token_id | |
# 3. Define model inputs | |
# inputs_tensor has to be defined | |
# model_input_name is defined if model-specific keyword input is passed | |
# otherwise model_input_name is None | |
# all model-specific keyword inputs are removed from `model_kwargs` | |
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( | |
inputs, generation_config.bos_token_id, model_kwargs | |
) | |
batch_size = inputs_tensor.shape[0] | |
# 4. Define other model kwargs | |
model_kwargs["output_attentions"] = generation_config.output_attentions | |
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states | |
model_kwargs["use_cache"] = generation_config.use_cache | |
model_kwargs["guidance_scale"] = generation_config.guidance_scale | |
if model_kwargs.get("attention_mask", None) is None: | |
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( | |
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id | |
) | |
if "encoder_hidden_states" not in model_kwargs: | |
# encoder_hidden_states are created and added to `model_kwargs` | |
model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation( | |
inputs_tensor, | |
model_kwargs, | |
model_input_name, | |
guidance_scale=generation_config.guidance_scale, | |
) | |
# 5. Prepare `input_ids` which will be used for auto-regressive generation | |
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( | |
batch_size=batch_size, | |
model_input_name=model_input_name, | |
model_kwargs=model_kwargs, | |
decoder_start_token_id=generation_config.decoder_start_token_id, | |
bos_token_id=generation_config.bos_token_id, | |
device=inputs_tensor.device, | |
) | |
# 6. Prepare `max_length` depending on other stopping criteria. | |
input_ids_seq_length = input_ids.shape[-1] | |
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None | |
if has_default_max_length and generation_config.max_new_tokens is None: | |
logger.warning( | |
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " | |
"to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation." | |
) | |
elif generation_config.max_new_tokens is not None: | |
if not has_default_max_length: | |
logger.warning( | |
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" | |
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " | |
"Please refer to the documentation for more information. " | |
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" | |
) | |
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length | |
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: | |
raise ValueError( | |
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" | |
f" the maximum length ({generation_config.max_length})" | |
) | |
if input_ids_seq_length >= generation_config.max_length: | |
logger.warning( | |
f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" | |
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" | |
" increasing `max_new_tokens`." | |
) | |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen Melody) | |
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( | |
input_ids, | |
pad_token_id=generation_config.decoder_start_token_id, | |
max_length=generation_config.max_length, | |
) | |
# stash the delay mask so that we don't have to recompute in each forward pass | |
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask | |
# input_ids are ready to be placed on the streamer (if used) | |
if streamer is not None: | |
streamer.put(input_ids.cpu()) | |
# 7. determine generation mode | |
is_greedy_gen_mode = ( | |
(generation_config.num_beams == 1) | |
and (generation_config.num_beam_groups == 1) | |
and generation_config.do_sample is False | |
) | |
is_sample_gen_mode = ( | |
(generation_config.num_beams == 1) | |
and (generation_config.num_beam_groups == 1) | |
and generation_config.do_sample is True | |
) | |
# 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) | |
if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: | |
logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) | |
generation_config.guidance_scale = None | |
# 9. prepare distribution pre_processing samplers | |
logits_processor = self._get_logits_processor( | |
generation_config=generation_config, | |
input_ids_seq_length=input_ids_seq_length, | |
encoder_input_ids=inputs_tensor, | |
prefix_allowed_tokens_fn=None, | |
logits_processor=logits_processor, | |
) | |
# 10. prepare stopping criteria | |
stopping_criteria = self._get_stopping_criteria( | |
generation_config=generation_config, stopping_criteria=stopping_criteria | |
) | |
# ENTER LONGFORM GENERATION LOOP | |
generated_tokens = [] | |
# the first timestamps corresponds to decoder_start_token | |
current_generated_length = input_ids.shape[1] - 1 | |
max_new_tokens = generation_config.max_new_tokens | |
while current_generated_length + 20 <= max_longform_generation_length: | |
generation_config.max_new_tokens = min(max_new_tokens, max_longform_generation_length - current_generated_length) | |
if is_greedy_gen_mode: | |
if generation_config.num_return_sequences > 1: | |
raise ValueError( | |
"num_return_sequences has to be 1 when doing greedy search, " | |
f"but is {generation_config.num_return_sequences}." | |
) | |
# 11. run greedy search | |
outputs = self._greedy_search( | |
input_ids, | |
logits_processor=logits_processor, | |
stopping_criteria=stopping_criteria, | |
pad_token_id=generation_config.pad_token_id, | |
eos_token_id=generation_config.eos_token_id, | |
output_scores=generation_config.output_scores, | |
return_dict_in_generate=generation_config.return_dict_in_generate, | |
synced_gpus=synced_gpus, | |
streamer=streamer, | |
**model_kwargs, | |
) | |
elif is_sample_gen_mode: | |
# 11. prepare logits warper | |
logits_warper = self._get_logits_warper(generation_config) | |
# expand input_ids with `num_return_sequences` additional sequences per batch | |
input_ids, model_kwargs = self._expand_inputs_for_generation( | |
input_ids=input_ids, | |
expand_size=generation_config.num_return_sequences, | |
is_encoder_decoder=self.config.is_encoder_decoder, | |
**model_kwargs, | |
) | |
# 12. run sample | |
outputs = self._sample( | |
input_ids, | |
logits_processor=logits_processor, | |
logits_warper=logits_warper, | |
stopping_criteria=stopping_criteria, | |
pad_token_id=generation_config.pad_token_id, | |
eos_token_id=generation_config.eos_token_id, | |
output_scores=generation_config.output_scores, | |
return_dict_in_generate=generation_config.return_dict_in_generate, | |
synced_gpus=synced_gpus, | |
streamer=streamer, | |
**model_kwargs, | |
) | |
else: | |
raise ValueError( | |
"Got incompatible mode for generation, should be one of greedy or sampling. " | |
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." | |
) | |
if generation_config.return_dict_in_generate: | |
output_ids = outputs.sequences | |
else: | |
output_ids = outputs | |
# apply the pattern mask to the final ids | |
output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"]) | |
# revert the pattern delay mask by filtering the pad token id | |
output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( | |
batch_size, self.decoder.num_codebooks, -1 | |
) | |
if len(generated_tokens) >= 1: | |
generated_tokens.append(output_ids[:, :, self.stride_longform:]) | |
else: | |
generated_tokens.append(output_ids) | |
current_generated_length += generated_tokens[-1].shape[-1] | |
# append the frame dimension back to the audio codes | |
# use last generated tokens as begining of the newest generation | |
output_ids = output_ids[None, :, :, - self.stride_longform:] | |
model_kwargs = self._prepare_audio_encoder_kwargs_for_longform_generation(output_ids, model_kwargs) | |
# Prepare new `input_ids` which will be used for auto-regressive generation | |
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( | |
batch_size=batch_size, | |
model_input_name="input_ids", | |
model_kwargs=model_kwargs, | |
decoder_start_token_id=self.generation_config.decoder_start_token_id, | |
bos_token_id=self.generation_config.bos_token_id, | |
device=input_ids.device, | |
) | |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Musicgen Melody) | |
input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( | |
input_ids, | |
pad_token_id=generation_config.decoder_start_token_id, | |
max_length=generation_config.max_length, | |
) | |
# stash the delay mask so that we don't have to recompute in each forward pass | |
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask | |
# TODO(YL): periodic prompt song | |
# encoder_hidden_states are created and added to `model_kwargs` | |
# model_kwargs = self._prepare_encoder_hidden_states_kwargs_for_generation( | |
# inputs_tensor, | |
# model_kwargs, | |
# model_input_name, | |
# guidance_scale=generation_config.guidance_scale, | |
# ) | |
# append the frame dimension back to the audio codes | |
output_ids = torch.cat(generated_tokens, dim=-1)[None, ...] | |
# Specific to this gradio demo | |
if streamer is not None: | |
streamer.end(True) | |
audio_scales = model_kwargs.get("audio_scales") | |
if audio_scales is None: | |
audio_scales = [None] * batch_size | |
if self.decoder.config.audio_channels == 1: | |
output_values = self.audio_encoder.decode( | |
output_ids, | |
audio_scales=audio_scales, | |
).audio_values | |
else: | |
codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales) | |
output_values_left = codec_outputs_left.audio_values | |
codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales) | |
output_values_right = codec_outputs_right.audio_values | |
output_values = torch.cat([output_values_left, output_values_right], dim=1) | |
if generation_config.return_dict_in_generate: | |
outputs.sequences = output_values | |
return outputs | |
else: | |
return output_values | |
model = MusicgenMelodyForLongFormConditionalGeneration.from_pretrained("facebook/musicgen-melody", revision="refs/pr/14")#, attn_implementation="sdpa") | |
processor = AutoProcessor.from_pretrained("facebook/musicgen-melody", revision="refs/pr/14") | |
demucs = pretrained.get_model('htdemucs') | |
title = "Streaming Long-form MusicGen" | |
description = """ | |
Stream the outputs of the MusicGen Melody text-to-music model by playing the generated audio as soon as the first chunk is ready. | |
The generation loop is adapted to perform **long-form** music generation. In this demo, we limit the duration of the music generated, but in theory, it could run **endlessly**. | |
Demo uses [MusicGen Melody](https://huggingface.co/facebook/musicgen-melody) in the 🤗 Transformers library. Note that the | |
demo works best on the Chrome browser. If there is no audio output, try switching browser to Chrome. | |
""" | |
article = """ | |
## FAQ | |
### How Does It Work? | |
MusicGen is an auto-regressive transformer-based model, meaning generates audio codes (tokens) in a causal fashion. | |
At each decoding step, the model generates a new set of audio codes, conditional on the text input and all previous audio codes. From the | |
frame rate of the [EnCodec model](https://huggingface.co/facebook/encodec_32khz) used to decode the generated codes to audio waveform, | |
each set of generated audio codes corresponds to 0.02 seconds. This means we require a total of 1000 decoding steps to generate | |
20 seconds of audio. | |
Rather than waiting for the entire audio sequence to be generated, which would require the full 1000 decoding steps, we can start | |
playing the audio after a specified number of decoding steps have been reached, a techinque known as [*streaming*](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming). | |
For example, after 250 steps we have the first 5 seconds of audio ready, and so can play this without waiting for the remaining | |
750 decoding steps to be complete. As we continue to generate with the MusicGen model, we append new chunks of generated audio | |
to our output waveform on-the-fly. After the full 1000 decoding steps, the generated audio is complete, and is composed of four | |
chunks of audio, each corresponding to 250 tokens. | |
This method of playing incremental generations **reduces the latency** of the MusicGen model from the total time to generate 1000 tokens, | |
to the time taken to play the first chunk of audio (250 tokens). This can result in **significant improvements** to perceived latency, | |
particularly when the chunk size is chosen to be small. | |
In practice, the chunk size should be tuned to your device: using a smaller chunk size will mean that the first chunk is ready faster, but should not be chosen so small that the model generates slower | |
than the time it takes to play the audio. | |
For details on how the streaming class works, check out the source code for the [MusicgenStreamer](https://huggingface.co/spaces/sanchit-gandhi/musicgen-streaming/blob/main/app.py#L52). | |
### Could this be used for stereo music generation? | |
In theory, yes, but you would have to adapt the current demo a bit and use a checkpoint specificaly made for stereo generation, for example, this [one](https://huggingface.co/facebook/musicgen-stereo-melody). | |
### Why is there a delay between the moment the first chunk is generated and the moment the audio starts playing? | |
This behaviour is specific to gradio and the different components it uses. If you ever adapt this demo for a streaming use-case, you could have lower latency. | |
""" | |
class MusicgenStreamer(BaseStreamer): | |
def __init__( | |
self, | |
model: MusicgenMelodyForConditionalGeneration, | |
device: Optional[str] = None, | |
play_steps: Optional[int] = 10, | |
stride: Optional[int] = None, | |
timeout: Optional[float] = None, | |
is_longform: Optional[bool] = False, | |
): | |
""" | |
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is | |
useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive | |
Gradio demo). | |
Parameters: | |
model (`MusicgenForConditionalGeneration`): | |
The MusicGen model used to generate the audio waveform. | |
device (`str`, *optional*): | |
The torch device on which to run the computation. If `None`, will default to the device of the model. | |
play_steps (`int`, *optional*, defaults to 10): | |
The number of generation steps with which to return the generated audio array. Using fewer steps will | |
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value | |
should be tuned to your device and latency requirements. | |
stride (`int`, *optional*): | |
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces | |
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to | |
play_steps // 6 in the audio space. | |
timeout (`int`, *optional*): | |
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions | |
in `.generate()`, when it is called in a separate thread. | |
is_longform (`bool`, *optional*, defaults to `False`): | |
If `is_longform`, will takes into account long form stride and non regular ending signal. | |
""" | |
self.decoder = model.decoder | |
self.audio_encoder = model.audio_encoder | |
self.generation_config = model.generation_config | |
self.device = device if device is not None else model.device | |
# variables used in the streaming process | |
self.play_steps = play_steps | |
if stride is not None: | |
self.stride = stride | |
else: | |
hop_length = np.prod(self.audio_encoder.config.upsampling_ratios) | |
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6 | |
self.token_cache = None | |
self.to_yield = 0 | |
self.is_longform = is_longform | |
if is_longform: | |
self.longform_stride = model.stride_longform | |
self.longform_stride_applied = True | |
# varibles used in the thread process | |
self.audio_queue = Queue() | |
self.stop_signal = None | |
self.timeout = timeout | |
def apply_delay_pattern_mask(self, input_ids): | |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) | |
_, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( | |
input_ids[:, :1], | |
pad_token_id=self.generation_config.decoder_start_token_id, | |
max_length=input_ids.shape[-1], | |
) | |
# apply the pattern mask to the input ids | |
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask) | |
# revert the pattern delay mask by filtering the pad token id | |
input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape( | |
1, self.decoder.num_codebooks, -1 | |
) | |
# append the frame dimension back to the audio codes | |
input_ids = input_ids[None, ...] | |
# send the input_ids to the correct device | |
input_ids = input_ids.to(self.audio_encoder.device) | |
if self.decoder.config.audio_channels == 1: | |
output_values = self.audio_encoder.decode( | |
input_ids, | |
audio_scales=[None], | |
).audio_values | |
else: | |
codec_outputs_left = self.audio_encoder.decode(input_ids[:, :, ::2, :], audio_scales=[None]) | |
output_values_left = codec_outputs_left.audio_values | |
codec_outputs_right = self.audio_encoder.decode(input_ids[:, :, 1::2, :], audio_scales=[None]) | |
output_values_right = codec_outputs_right.audio_values | |
output_values = torch.cat([output_values_left, output_values_right], dim=1) | |
audio_values = output_values[0, 0] | |
return audio_values.cpu().float().numpy() | |
def put(self, value): | |
batch_size = value.shape[0] // self.decoder.num_codebooks | |
if batch_size > 1: | |
raise ValueError("MusicgenStreamer only supports batch size 1") | |
if self.token_cache is None: | |
self.token_cache = value | |
else: | |
# if self.is_longform and not self.longform_stride_applied: | |
# value = value[self.longform_stride:] | |
# self.longform_stride_applied = True | |
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1) | |
if self.token_cache.shape[-1] % self.play_steps == 0: | |
audio_values = self.apply_delay_pattern_mask(self.token_cache) | |
self.on_finalized_audio(audio_values[self.to_yield : -self.stride]) | |
self.to_yield += len(audio_values) - self.to_yield - self.stride | |
def end(self, stream_end=False): | |
"""Flushes any remaining cache and appends the stop symbol.""" | |
if self.token_cache is not None: | |
audio_values = self.apply_delay_pattern_mask(self.token_cache) | |
else: | |
audio_values = np.zeros(self.to_yield) | |
stream_end = (not self.is_longform) or stream_end | |
if self.is_longform: | |
self.longform_stride_applied = False | |
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=stream_end) | |
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False): | |
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue.""" | |
self.audio_queue.put(audio, timeout=self.timeout) | |
if stream_end: | |
self.audio_queue.put(self.stop_signal, timeout=self.timeout) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
value = self.audio_queue.get(timeout=self.timeout) | |
if not isinstance(value, np.ndarray) and value == self.stop_signal: | |
raise StopIteration() | |
else: | |
return value | |
sampling_rate = model.audio_encoder.config.sampling_rate | |
frame_rate = model.audio_encoder.config.frame_rate | |
target_dtype = np.int16 | |
max_range = np.iinfo(target_dtype).max | |
def wave_header_chunk(frame_input=b"", channels=1, sample_width=2, sample_rate=24000): | |
# This will create a wave header then append the frame input | |
# It should be first on a streaming wav file | |
# Other frames better should not have it (else you will hear some artifacts each chunk start) | |
wav_buf = io.BytesIO() | |
with wave.open(wav_buf, "wb") as vfout: | |
vfout.setnchannels(channels) | |
vfout.setsampwidth(sample_width) | |
vfout.setframerate(sample_rate) | |
vfout.writeframes(frame_input) | |
wav_buf.seek(0) | |
return wav_buf.read() | |
def generate_audio(text_prompt, audio, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0): | |
max_new_tokens = int(frame_rate * audio_length_in_s) | |
play_steps = int(frame_rate * play_steps_in_s) | |
if audio is not None: | |
audio = torchaudio.load(audio) | |
audio = convert_audio(audio[0], audio[1], demucs.samplerate, demucs.audio_channels) | |
audio = apply_model(demucs, audio[None]) | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
if device != model.device: | |
model.to(device) | |
if device == "cuda:0": | |
model.half() | |
if audio is not None: | |
inputs = processor( | |
text=text_prompt, | |
padding=True, | |
return_tensors="pt", | |
audio=audio, sampling_rate=demucs.samplerate | |
) | |
if device == "cuda:0": | |
inputs["input_features"] = inputs["input_features"].to(torch.float16) | |
else: | |
inputs = processor( | |
text=text_prompt, | |
padding=True, | |
return_tensors="pt", | |
) | |
streamer = MusicgenStreamer(model, device=device, play_steps=play_steps, is_longform=True, ) | |
generation_kwargs = dict( | |
**inputs.to(device), | |
temperature=1.2, | |
streamer=streamer, | |
max_new_tokens=min(max_new_tokens, 1500), | |
max_longform_generation_length=max_new_tokens, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
yield wave_header_chunk() | |
set_seed(seed) | |
for new_audio in streamer: | |
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") | |
new_audio = (new_audio * max_range).astype(np.int16) | |
# (sampling_rate, new_audio) | |
yield new_audio.tobytes() | |
demo = gr.Interface( | |
fn=generate_audio, | |
inputs=[ | |
gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"), | |
gr.Audio(type="filepath", label="Conditioning audio. Use this for melody-guided generation."), | |
gr.Slider(35, 60, value=45, step=5, label="(Approximate) Audio length in seconds."), | |
gr.Slider(0.5, 2.5, value=1.5, step=0.5, label="Streaming interval in seconds.", info="Lower = shorter chunks, lower latency, more codec steps."), | |
gr.Number(value=5, precision=0, step=1, minimum=0, label="Seed for random generations."), | |
], | |
outputs=[ | |
gr.Audio(label="Generated Music", autoplay=True, interactive=False, streaming=True) | |
], | |
examples=[ | |
["An 80s driving pop song with heavy drums and synth pads in the background", None, 45, 1.5, 5], | |
["Bossa nova with guitars and synthesizer", None, 45, 1.5, 5], | |
["90s rock song with electric guitar and heavy drums", None, 45, 1.5, 5], | |
["a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130", None, 45, 1.5, 5], | |
["lofi slow bpm electro chill with organic samples", None, 45, 1.5, 5], | |
], | |
title=title, | |
description=description, | |
allow_flagging=False, | |
article=article, | |
cache_examples=False, | |
) | |
demo.queue().launch(debug=True) |