Spaces:
Running
Running
from vencoder.encoder import SpeechEncoder | |
import torch | |
from vencoder.hubert import hubert_model | |
class HubertSoft(SpeechEncoder): | |
def __init__(self,vec_path = "pretrain/hubert-soft-0d54a1f4.pt",device=None): | |
print("load model(s) from {}".format(vec_path)) | |
hubert_soft = hubert_model.hubert_soft(vec_path) | |
if device is None: | |
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
else: | |
self.dev = torch.device(device) | |
self.hidden_dim = 256 | |
self.model = hubert_soft.to(self.dev) | |
def encoder(self, wav): | |
feats = wav | |
if feats.dim() == 2: # double channels | |
feats = feats.mean(-1) | |
assert feats.dim() == 1, feats.dim() | |
feats = feats[None,None,:] | |
with torch.no_grad(): | |
with torch.inference_mode(): | |
units = self.model.units(feats) | |
return units.transpose(1,2) | |