Spaces:
Running
Running
from collections import deque | |
from functools import partial | |
from inspect import isfunction | |
import torch.nn.functional as F | |
import librosa.sequence | |
import numpy as np | |
from torch.nn import Conv1d | |
from torch.nn import Mish | |
import torch | |
from torch import nn | |
from tqdm import tqdm | |
import math | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def extract(a, t): | |
return a[t].reshape((1, 1, 1, 1)) | |
def noise_like(shape, device, repeat=False): | |
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) | |
noise = lambda: torch.randn(shape, device=device) | |
return repeat_noise() if repeat else noise() | |
def linear_beta_schedule(timesteps, max_beta=0.02): | |
""" | |
linear schedule | |
""" | |
betas = np.linspace(1e-4, max_beta, timesteps) | |
return betas | |
def cosine_beta_schedule(timesteps, s=0.008): | |
""" | |
cosine schedule | |
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ | |
""" | |
steps = timesteps + 1 | |
x = np.linspace(0, steps, steps) | |
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
return np.clip(betas, a_min=0, a_max=0.999) | |
beta_schedule = { | |
"cosine": cosine_beta_schedule, | |
"linear": linear_beta_schedule, | |
} | |
def extract_1(a, t): | |
return a[t].reshape((1, 1, 1, 1)) | |
def predict_stage0(noise_pred, noise_pred_prev): | |
return (noise_pred + noise_pred_prev) / 2 | |
def predict_stage1(noise_pred, noise_list): | |
return (noise_pred * 3 | |
- noise_list[-1]) / 2 | |
def predict_stage2(noise_pred, noise_list): | |
return (noise_pred * 23 | |
- noise_list[-1] * 16 | |
+ noise_list[-2] * 5) / 12 | |
def predict_stage3(noise_pred, noise_list): | |
return (noise_pred * 55 | |
- noise_list[-1] * 59 | |
+ noise_list[-2] * 37 | |
- noise_list[-3] * 9) / 24 | |
class SinusoidalPosEmb(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
self.half_dim = dim // 2 | |
self.emb = 9.21034037 / (self.half_dim - 1) | |
self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0) | |
self.emb = self.emb.cpu() | |
def forward(self, x): | |
emb = self.emb * x | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb | |
class ResidualBlock(nn.Module): | |
def __init__(self, encoder_hidden, residual_channels, dilation): | |
super().__init__() | |
self.residual_channels = residual_channels | |
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation) | |
self.diffusion_projection = nn.Linear(residual_channels, residual_channels) | |
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1) | |
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1) | |
def forward(self, x, conditioner, diffusion_step): | |
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1) | |
conditioner = self.conditioner_projection(conditioner) | |
y = x + diffusion_step | |
y = self.dilated_conv(y) + conditioner | |
gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1) | |
y = torch.sigmoid(gate) * torch.tanh(filter_1) | |
y = self.output_projection(y) | |
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1) | |
return (x + residual) / 1.41421356, skip | |
class DiffNet(nn.Module): | |
def __init__(self, in_dims, n_layers, n_chans, n_hidden): | |
super().__init__() | |
self.encoder_hidden = n_hidden | |
self.residual_layers = n_layers | |
self.residual_channels = n_chans | |
self.input_projection = Conv1d(in_dims, self.residual_channels, 1) | |
self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels) | |
dim = self.residual_channels | |
self.mlp = nn.Sequential( | |
nn.Linear(dim, dim * 4), | |
Mish(), | |
nn.Linear(dim * 4, dim) | |
) | |
self.residual_layers = nn.ModuleList([ | |
ResidualBlock(self.encoder_hidden, self.residual_channels, 1) | |
for i in range(self.residual_layers) | |
]) | |
self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1) | |
self.output_projection = Conv1d(self.residual_channels, in_dims, 1) | |
nn.init.zeros_(self.output_projection.weight) | |
def forward(self, spec, diffusion_step, cond): | |
x = spec.squeeze(0) | |
x = self.input_projection(x) # x [B, residual_channel, T] | |
x = F.relu(x) | |
# skip = torch.randn_like(x) | |
diffusion_step = diffusion_step.float() | |
diffusion_step = self.diffusion_embedding(diffusion_step) | |
diffusion_step = self.mlp(diffusion_step) | |
x, skip = self.residual_layers[0](x, cond, diffusion_step) | |
# noinspection PyTypeChecker | |
for layer in self.residual_layers[1:]: | |
x, skip_connection = layer.forward(x, cond, diffusion_step) | |
skip = skip + skip_connection | |
x = skip / math.sqrt(len(self.residual_layers)) | |
x = self.skip_projection(x) | |
x = F.relu(x) | |
x = self.output_projection(x) # [B, 80, T] | |
return x.unsqueeze(1) | |
class AfterDiffusion(nn.Module): | |
def __init__(self, spec_max, spec_min, v_type='a'): | |
super().__init__() | |
self.spec_max = spec_max | |
self.spec_min = spec_min | |
self.type = v_type | |
def forward(self, x): | |
x = x.squeeze(1).permute(0, 2, 1) | |
mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min | |
if self.type == 'nsf-hifigan-log10': | |
mel_out = mel_out * 0.434294 | |
return mel_out.transpose(2, 1) | |
class Pred(nn.Module): | |
def __init__(self, alphas_cumprod): | |
super().__init__() | |
self.alphas_cumprod = alphas_cumprod | |
def forward(self, x_1, noise_t, t_1, t_prev): | |
a_t = extract(self.alphas_cumprod, t_1).cpu() | |
a_prev = extract(self.alphas_cumprod, t_prev).cpu() | |
a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu() | |
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / ( | |
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t) | |
x_pred = x_1 + x_delta.cpu() | |
return x_pred | |
class GaussianDiffusion(nn.Module): | |
def __init__(self, | |
out_dims=128, | |
n_layers=20, | |
n_chans=384, | |
n_hidden=256, | |
timesteps=1000, | |
k_step=1000, | |
max_beta=0.02, | |
spec_min=-12, | |
spec_max=2): | |
super().__init__() | |
self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden) | |
self.out_dims = out_dims | |
self.mel_bins = out_dims | |
self.n_hidden = n_hidden | |
betas = beta_schedule['linear'](timesteps, max_beta=max_beta) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.k_step = k_step | |
self.noise_list = deque(maxlen=4) | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims]) | |
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims]) | |
self.ad = AfterDiffusion(self.spec_max, self.spec_min) | |
self.xp = Pred(self.alphas_cumprod) | |
def q_mean_variance(self, x_start, t): | |
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
variance = extract(1. - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, cond): | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False): | |
""" | |
Use the PLMS method from | |
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778). | |
""" | |
def get_x_pred(x, noise_t, t): | |
a_t = extract(self.alphas_cumprod, t) | |
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t))) | |
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt() | |
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / ( | |
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t) | |
x_pred = x + x_delta | |
return x_pred | |
noise_list = self.noise_list | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
if len(noise_list) == 0: | |
x_pred = get_x_pred(x, noise_pred, t) | |
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond) | |
noise_pred_prime = (noise_pred + noise_pred_prev) / 2 | |
elif len(noise_list) == 1: | |
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2 | |
elif len(noise_list) == 2: | |
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12 | |
else: | |
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24 | |
x_prev = get_x_pred(x, noise_pred_prime, t) | |
noise_list.append(noise_pred) | |
return x_prev | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return ( | |
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
) | |
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
x_recon = self.denoise_fn(x_noisy, t, cond) | |
if loss_type == 'l1': | |
loss = (noise - x_recon).abs().mean() | |
elif loss_type == 'l2': | |
loss = F.mse_loss(noise, x_recon) | |
else: | |
raise NotImplementedError() | |
return loss | |
def org_forward(self, | |
condition, | |
init_noise=None, | |
gt_spec=None, | |
infer=True, | |
infer_speedup=100, | |
method='pndm', | |
k_step=1000, | |
use_tqdm=True): | |
""" | |
conditioning diffusion, use fastspeech2 encoder output as the condition | |
""" | |
cond = condition | |
b, device = condition.shape[0], condition.device | |
if not infer: | |
spec = self.norm_spec(gt_spec) | |
t = torch.randint(0, self.k_step, (b,), device=device).long() | |
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] | |
return self.p_losses(norm_spec, t, cond=cond) | |
else: | |
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2]) | |
if gt_spec is None: | |
t = self.k_step | |
if init_noise is None: | |
x = torch.randn(shape, device=device) | |
else: | |
x = init_noise | |
else: | |
t = k_step | |
norm_spec = self.norm_spec(gt_spec) | |
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :] | |
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long()) | |
if method is not None and infer_speedup > 1: | |
if method == 'dpm-solver': | |
from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver | |
# 1. Define the noise schedule. | |
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t]) | |
# 2. Convert your discrete-time `model` to the continuous-time | |
# noise prediction model. Here is an example for a diffusion model | |
# `model` with the noise prediction type ("noise") . | |
def my_wrapper(fn): | |
def wrapped(x, t, **kwargs): | |
ret = fn(x, t, **kwargs) | |
if use_tqdm: | |
self.bar.update(1) | |
return ret | |
return wrapped | |
model_fn = model_wrapper( | |
my_wrapper(self.denoise_fn), | |
noise_schedule, | |
model_type="noise", # or "x_start" or "v" or "score" | |
model_kwargs={"cond": cond} | |
) | |
# 3. Define dpm-solver and sample by singlestep DPM-Solver. | |
# (We recommend singlestep DPM-Solver for unconditional sampling) | |
# You can adjust the `steps` to balance the computation | |
# costs and the sample quality. | |
dpm_solver = DPM_Solver(model_fn, noise_schedule) | |
steps = t // infer_speedup | |
if use_tqdm: | |
self.bar = tqdm(desc="sample time step", total=steps) | |
x = dpm_solver.sample( | |
x, | |
steps=steps, | |
order=3, | |
skip_type="time_uniform", | |
method="singlestep", | |
) | |
if use_tqdm: | |
self.bar.close() | |
elif method == 'pndm': | |
self.noise_list = deque(maxlen=4) | |
if use_tqdm: | |
for i in tqdm( | |
reversed(range(0, t, infer_speedup)), desc='sample time step', | |
total=t // infer_speedup, | |
): | |
x = self.p_sample_plms( | |
x, torch.full((b,), i, device=device, dtype=torch.long), | |
infer_speedup, cond=cond | |
) | |
else: | |
for i in reversed(range(0, t, infer_speedup)): | |
x = self.p_sample_plms( | |
x, torch.full((b,), i, device=device, dtype=torch.long), | |
infer_speedup, cond=cond | |
) | |
else: | |
raise NotImplementedError(method) | |
else: | |
if use_tqdm: | |
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): | |
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) | |
else: | |
for i in reversed(range(0, t)): | |
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) | |
x = x.squeeze(1).transpose(1, 2) # [B, T, M] | |
return self.denorm_spec(x).transpose(2, 1) | |
def norm_spec(self, x): | |
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 | |
def denorm_spec(self, x): | |
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min | |
def get_x_pred(self, x_1, noise_t, t_1, t_prev): | |
a_t = extract(self.alphas_cumprod, t_1) | |
a_prev = extract(self.alphas_cumprod, t_prev) | |
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt() | |
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / ( | |
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t) | |
x_pred = x_1 + x_delta | |
return x_pred | |
def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True): | |
cond = torch.randn([1, self.n_hidden, 10]).cpu() | |
if init_noise is None: | |
x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu() | |
else: | |
x = init_noise | |
pndms = 100 | |
org_y_x = self.org_forward(cond, init_noise=x) | |
device = cond.device | |
n_frames = cond.shape[2] | |
step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0) | |
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device) | |
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device) | |
ot = step_range[0] | |
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long) | |
if export_denoise: | |
torch.onnx.export( | |
self.denoise_fn, | |
(x.cpu(), ot_1.cpu(), cond.cpu()), | |
f"{project_name}_denoise.onnx", | |
input_names=["noise", "time", "condition"], | |
output_names=["noise_pred"], | |
dynamic_axes={ | |
"noise": [3], | |
"condition": [2] | |
}, | |
opset_version=16 | |
) | |
for t in step_range: | |
t_1 = torch.full((1,), t, device=device, dtype=torch.long) | |
noise_pred = self.denoise_fn(x, t_1, cond) | |
t_prev = t_1 - pndms | |
t_prev = t_prev * (t_prev > 0) | |
if plms_noise_stage == 0: | |
if export_pred: | |
torch.onnx.export( | |
self.xp, | |
(x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()), | |
f"{project_name}_pred.onnx", | |
input_names=["noise", "noise_pred", "time", "time_prev"], | |
output_names=["noise_pred_o"], | |
dynamic_axes={ | |
"noise": [3], | |
"noise_pred": [3] | |
}, | |
opset_version=16 | |
) | |
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev) | |
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond) | |
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev) | |
elif plms_noise_stage == 1: | |
noise_pred_prime = predict_stage1(noise_pred, noise_list) | |
elif plms_noise_stage == 2: | |
noise_pred_prime = predict_stage2(noise_pred, noise_list) | |
else: | |
noise_pred_prime = predict_stage3(noise_pred, noise_list) | |
noise_pred = noise_pred.unsqueeze(0) | |
if plms_noise_stage < 3: | |
noise_list = torch.cat((noise_list, noise_pred), dim=0) | |
plms_noise_stage = plms_noise_stage + 1 | |
else: | |
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0) | |
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev) | |
if export_after: | |
torch.onnx.export( | |
self.ad, | |
x.cpu(), | |
f"{project_name}_after.onnx", | |
input_names=["x"], | |
output_names=["mel_out"], | |
dynamic_axes={ | |
"x": [3] | |
}, | |
opset_version=16 | |
) | |
x = self.ad(x) | |
print((x == org_y_x).all()) | |
return x | |
def forward(self, condition=None, init_noise=None, pndms=None, k_step=None): | |
cond = condition | |
x = init_noise | |
device = cond.device | |
n_frames = cond.shape[2] | |
step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0) | |
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device) | |
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device) | |
ot = step_range[0] | |
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long) | |
for t in step_range: | |
t_1 = torch.full((1,), t, device=device, dtype=torch.long) | |
noise_pred = self.denoise_fn(x, t_1, cond) | |
t_prev = t_1 - pndms | |
t_prev = t_prev * (t_prev > 0) | |
if plms_noise_stage == 0: | |
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev) | |
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond) | |
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev) | |
elif plms_noise_stage == 1: | |
noise_pred_prime = predict_stage1(noise_pred, noise_list) | |
elif plms_noise_stage == 2: | |
noise_pred_prime = predict_stage2(noise_pred, noise_list) | |
else: | |
noise_pred_prime = predict_stage3(noise_pred, noise_list) | |
noise_pred = noise_pred.unsqueeze(0) | |
if plms_noise_stage < 3: | |
noise_list = torch.cat((noise_list, noise_pred), dim=0) | |
plms_noise_stage = plms_noise_stage + 1 | |
else: | |
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0) | |
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev) | |
x = self.ad(x) | |
return x | |