yl12053's picture
fc
b7a0d37
from vencoder.encoder import SpeechEncoder
import torch
from vencoder.wavlm.WavLM import WavLM, WavLMConfig
class WavLMBasePlus(SpeechEncoder):
def __init__(self,vec_path = "pretrain/WavLM-Base+.pt",device=None):
print("load model(s) from {}".format(vec_path))
checkpoint = torch.load(vec_path)
self.cfg = WavLMConfig(checkpoint['cfg'])
if device is None:
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
self.dev = torch.device(device)
self.hidden_dim = self.cfg.encoder_embed_dim
self.model = WavLM(self.cfg)
self.model.load_state_dict(checkpoint['model'])
self.model.to(self.dev).eval()
def encoder(self, wav):
feats = wav
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
if self.cfg.normalize:
feats = torch.nn.functional.layer_norm(feats , feats.shape)
with torch.no_grad():
with torch.inference_mode():
units = self.model.extract_features(feats[None,:])[0]
return units.transpose(1,2)