|
from vencoder.encoder import SpeechEncoder |
|
import torch |
|
from fairseq import checkpoint_utils |
|
|
|
class ContentVec256L9(SpeechEncoder): |
|
def __init__(self,vec_path = "pretrain/checkpoint_best_legacy_500.pt",device=None): |
|
print("load model(s) from {}".format(vec_path)) |
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( |
|
[vec_path], |
|
suffix="", |
|
) |
|
self.hidden_dim = 256 |
|
if device is None: |
|
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
else: |
|
self.dev = torch.device(device) |
|
self.model = models[0].to(self.dev) |
|
self.model.eval() |
|
|
|
def encoder(self, wav): |
|
feats = wav |
|
if feats.dim() == 2: |
|
feats = feats.mean(-1) |
|
assert feats.dim() == 1, feats.dim() |
|
feats = feats.view(1, -1) |
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False) |
|
inputs = { |
|
"source": feats.to(wav.device), |
|
"padding_mask": padding_mask.to(wav.device), |
|
"output_layer": 9, |
|
} |
|
with torch.no_grad(): |
|
logits = self.model.extract_features(**inputs) |
|
feats = self.model.final_proj(logits[0]) |
|
return feats.transpose(1, 2) |
|
|