Spaces:
Running
Running
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Project given image to the latent space of pretrained network pickle.""" | |
import copy | |
import os | |
from time import perf_counter | |
import click | |
import imageio | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
import dnnlib | |
import legacy | |
def project( | |
G, | |
target: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution | |
*, | |
num_steps = 1000, | |
w_avg_samples = 10000, | |
initial_learning_rate = 0.1, | |
initial_noise_factor = 0.05, | |
lr_rampdown_length = 0.25, | |
lr_rampup_length = 0.05, | |
noise_ramp_length = 0.75, | |
regularize_noise_weight = 1e5, | |
verbose = False, | |
device: torch.device | |
): | |
assert target.shape == (G.img_channels, G.img_resolution, G.img_resolution) | |
def logprint(*args): | |
if verbose: | |
print(*args) | |
G = copy.deepcopy(G).eval().requires_grad_(False).to(device) # type: ignore | |
# Compute w stats. | |
logprint(f'Computing W midpoint and stddev using {w_avg_samples} samples...') | |
z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim) | |
w_samples = G.mapping(torch.from_numpy(z_samples).to(device), None) # [N, L, C] | |
w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32) # [N, 1, C] | |
w_avg = np.mean(w_samples, axis=0, keepdims=True) # [1, 1, C] | |
w_std = (np.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5 | |
# Setup noise inputs. | |
noise_bufs = { name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name } | |
# Load VGG16 feature detector. | |
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt' | |
with dnnlib.util.open_url(url) as f: | |
vgg16 = torch.jit.load(f).eval().to(device) | |
# Features for target image. | |
target_images = target.unsqueeze(0).to(device).to(torch.float32) | |
if target_images.shape[2] > 256: | |
target_images = F.interpolate(target_images, size=(256, 256), mode='area') | |
target_features = vgg16(target_images, resize_images=False, return_lpips=True) | |
w_opt = torch.tensor(w_avg, dtype=torch.float32, device=device, requires_grad=True) # pylint: disable=not-callable | |
w_out = torch.zeros([num_steps] + list(w_opt.shape[1:]), dtype=torch.float32, device=device) | |
optimizer = torch.optim.Adam([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999), lr=initial_learning_rate) | |
# Init noise. | |
for buf in noise_bufs.values(): | |
buf[:] = torch.randn_like(buf) | |
buf.requires_grad = True | |
for step in range(num_steps): | |
# Learning rate schedule. | |
t = step / num_steps | |
w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2 | |
lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length) | |
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi) | |
lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length) | |
lr = initial_learning_rate * lr_ramp | |
for param_group in optimizer.param_groups: | |
param_group['lr'] = lr | |
# Synth images from opt_w. | |
w_noise = torch.randn_like(w_opt) * w_noise_scale | |
ws = (w_opt + w_noise).repeat([1, G.mapping.num_ws, 1]) | |
synth_images = G.synthesis(ws, noise_mode='const') | |
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images. | |
synth_images = (synth_images + 1) * (255/2) | |
if synth_images.shape[2] > 256: | |
synth_images = F.interpolate(synth_images, size=(256, 256), mode='area') | |
# Features for synth images. | |
synth_features = vgg16(synth_images, resize_images=False, return_lpips=True) | |
dist = (target_features - synth_features).square().sum() | |
# Noise regularization. | |
reg_loss = 0.0 | |
for v in noise_bufs.values(): | |
noise = v[None,None,:,:] # must be [1,1,H,W] for F.avg_pool2d() | |
while True: | |
reg_loss += (noise*torch.roll(noise, shifts=1, dims=3)).mean()**2 | |
reg_loss += (noise*torch.roll(noise, shifts=1, dims=2)).mean()**2 | |
if noise.shape[2] <= 8: | |
break | |
noise = F.avg_pool2d(noise, kernel_size=2) | |
loss = dist + reg_loss * regularize_noise_weight | |
# Step | |
optimizer.zero_grad(set_to_none=True) | |
loss.backward() | |
optimizer.step() | |
logprint(f'step {step+1:>4d}/{num_steps}: dist {dist:<4.2f} loss {float(loss):<5.2f}') | |
# Save projected W for each optimization step. | |
w_out[step] = w_opt.detach()[0] | |
# Normalize noise. | |
with torch.no_grad(): | |
for buf in noise_bufs.values(): | |
buf -= buf.mean() | |
buf *= buf.square().mean().rsqrt() | |
return w_out.repeat([1, G.mapping.num_ws, 1]) | |
#---------------------------------------------------------------------------- | |
def run_projection( | |
network_pkl: str, | |
target_fname: str, | |
outdir: str, | |
save_video: bool, | |
seed: int, | |
num_steps: int | |
): | |
"""Project given image to the latent space of pretrained network pickle. | |
Examples: | |
\b | |
python projector.py --outdir=out --target=~/mytargetimg.png \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl | |
""" | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
# Load networks. | |
print('Loading networks from "%s"...' % network_pkl) | |
device = torch.device('cuda') | |
with dnnlib.util.open_url(network_pkl) as fp: | |
G = legacy.load_network_pkl(fp)['G_ema'].requires_grad_(False).to(device) # type: ignore | |
# Load target image. | |
target_pil = PIL.Image.open(target_fname).convert('RGB') | |
w, h = target_pil.size | |
s = min(w, h) | |
target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2)) | |
target_pil = target_pil.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS) | |
target_uint8 = np.array(target_pil, dtype=np.uint8) | |
# Optimize projection. | |
start_time = perf_counter() | |
projected_w_steps = project( | |
G, | |
target=torch.tensor(target_uint8.transpose([2, 0, 1]), device=device), # pylint: disable=not-callable | |
num_steps=num_steps, | |
device=device, | |
verbose=True | |
) | |
print (f'Elapsed: {(perf_counter()-start_time):.1f} s') | |
# Render debug output: optional video and projected image and W vector. | |
os.makedirs(outdir, exist_ok=True) | |
if save_video: | |
video = imageio.get_writer(f'{outdir}/proj.mp4', mode='I', fps=10, codec='libx264', bitrate='16M') | |
print (f'Saving optimization progress video "{outdir}/proj.mp4"') | |
for projected_w in projected_w_steps: | |
synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const') | |
synth_image = (synth_image + 1) * (255/2) | |
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy() | |
video.append_data(np.concatenate([target_uint8, synth_image], axis=1)) | |
video.close() | |
# Save final projected frame and W vector. | |
target_pil.save(f'{outdir}/target.png') | |
projected_w = projected_w_steps[-1] | |
synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const') | |
synth_image = (synth_image + 1) * (255/2) | |
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy() | |
PIL.Image.fromarray(synth_image, 'RGB').save(f'{outdir}/proj.png') | |
np.savez(f'{outdir}/projected_w.npz', w=projected_w.unsqueeze(0).cpu().numpy()) | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
run_projection() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |