apes / metrics /metric_utils.py
tkarras's picture
Initial commit
375a436
raw
history blame
11.6 kB
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import time
import hashlib
import pickle
import copy
import uuid
import numpy as np
import torch
import dnnlib
#----------------------------------------------------------------------------
class MetricOptions:
def __init__(self, G=None, G_kwargs={}, dataset_kwargs={}, num_gpus=1, rank=0, device=None, progress=None, cache=True):
assert 0 <= rank < num_gpus
self.G = G
self.G_kwargs = dnnlib.EasyDict(G_kwargs)
self.dataset_kwargs = dnnlib.EasyDict(dataset_kwargs)
self.num_gpus = num_gpus
self.rank = rank
self.device = device if device is not None else torch.device('cuda', rank)
self.progress = progress.sub() if progress is not None and rank == 0 else ProgressMonitor()
self.cache = cache
#----------------------------------------------------------------------------
_feature_detector_cache = dict()
def get_feature_detector_name(url):
return os.path.splitext(url.split('/')[-1])[0]
def get_feature_detector(url, device=torch.device('cpu'), num_gpus=1, rank=0, verbose=False):
assert 0 <= rank < num_gpus
key = (url, device)
if key not in _feature_detector_cache:
is_leader = (rank == 0)
if not is_leader and num_gpus > 1:
torch.distributed.barrier() # leader goes first
with dnnlib.util.open_url(url, verbose=(verbose and is_leader)) as f:
_feature_detector_cache[key] = torch.jit.load(f).eval().to(device)
if is_leader and num_gpus > 1:
torch.distributed.barrier() # others follow
return _feature_detector_cache[key]
#----------------------------------------------------------------------------
class FeatureStats:
def __init__(self, capture_all=False, capture_mean_cov=False, max_items=None):
self.capture_all = capture_all
self.capture_mean_cov = capture_mean_cov
self.max_items = max_items
self.num_items = 0
self.num_features = None
self.all_features = None
self.raw_mean = None
self.raw_cov = None
def set_num_features(self, num_features):
if self.num_features is not None:
assert num_features == self.num_features
else:
self.num_features = num_features
self.all_features = []
self.raw_mean = np.zeros([num_features], dtype=np.float64)
self.raw_cov = np.zeros([num_features, num_features], dtype=np.float64)
def is_full(self):
return (self.max_items is not None) and (self.num_items >= self.max_items)
def append(self, x):
x = np.asarray(x, dtype=np.float32)
assert x.ndim == 2
if (self.max_items is not None) and (self.num_items + x.shape[0] > self.max_items):
if self.num_items >= self.max_items:
return
x = x[:self.max_items - self.num_items]
self.set_num_features(x.shape[1])
self.num_items += x.shape[0]
if self.capture_all:
self.all_features.append(x)
if self.capture_mean_cov:
x64 = x.astype(np.float64)
self.raw_mean += x64.sum(axis=0)
self.raw_cov += x64.T @ x64
def append_torch(self, x, num_gpus=1, rank=0):
assert isinstance(x, torch.Tensor) and x.ndim == 2
assert 0 <= rank < num_gpus
if num_gpus > 1:
ys = []
for src in range(num_gpus):
y = x.clone()
torch.distributed.broadcast(y, src=src)
ys.append(y)
x = torch.stack(ys, dim=1).flatten(0, 1) # interleave samples
self.append(x.cpu().numpy())
def get_all(self):
assert self.capture_all
return np.concatenate(self.all_features, axis=0)
def get_all_torch(self):
return torch.from_numpy(self.get_all())
def get_mean_cov(self):
assert self.capture_mean_cov
mean = self.raw_mean / self.num_items
cov = self.raw_cov / self.num_items
cov = cov - np.outer(mean, mean)
return mean, cov
def save(self, pkl_file):
with open(pkl_file, 'wb') as f:
pickle.dump(self.__dict__, f)
@staticmethod
def load(pkl_file):
with open(pkl_file, 'rb') as f:
s = dnnlib.EasyDict(pickle.load(f))
obj = FeatureStats(capture_all=s.capture_all, max_items=s.max_items)
obj.__dict__.update(s)
return obj
#----------------------------------------------------------------------------
class ProgressMonitor:
def __init__(self, tag=None, num_items=None, flush_interval=1000, verbose=False, progress_fn=None, pfn_lo=0, pfn_hi=1000, pfn_total=1000):
self.tag = tag
self.num_items = num_items
self.verbose = verbose
self.flush_interval = flush_interval
self.progress_fn = progress_fn
self.pfn_lo = pfn_lo
self.pfn_hi = pfn_hi
self.pfn_total = pfn_total
self.start_time = time.time()
self.batch_time = self.start_time
self.batch_items = 0
if self.progress_fn is not None:
self.progress_fn(self.pfn_lo, self.pfn_total)
def update(self, cur_items):
assert (self.num_items is None) or (cur_items <= self.num_items)
if (cur_items < self.batch_items + self.flush_interval) and (self.num_items is None or cur_items < self.num_items):
return
cur_time = time.time()
total_time = cur_time - self.start_time
time_per_item = (cur_time - self.batch_time) / max(cur_items - self.batch_items, 1)
if (self.verbose) and (self.tag is not None):
print(f'{self.tag:<19s} items {cur_items:<7d} time {dnnlib.util.format_time(total_time):<12s} ms/item {time_per_item*1e3:.2f}')
self.batch_time = cur_time
self.batch_items = cur_items
if (self.progress_fn is not None) and (self.num_items is not None):
self.progress_fn(self.pfn_lo + (self.pfn_hi - self.pfn_lo) * (cur_items / self.num_items), self.pfn_total)
def sub(self, tag=None, num_items=None, flush_interval=1000, rel_lo=0, rel_hi=1):
return ProgressMonitor(
tag = tag,
num_items = num_items,
flush_interval = flush_interval,
verbose = self.verbose,
progress_fn = self.progress_fn,
pfn_lo = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_lo,
pfn_hi = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_hi,
pfn_total = self.pfn_total,
)
#----------------------------------------------------------------------------
def compute_feature_stats_for_dataset(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, data_loader_kwargs=None, max_items=None, **stats_kwargs):
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
if data_loader_kwargs is None:
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2)
# Try to lookup from cache.
cache_file = None
if opts.cache:
# Choose cache file name.
args = dict(dataset_kwargs=opts.dataset_kwargs, detector_url=detector_url, detector_kwargs=detector_kwargs, stats_kwargs=stats_kwargs)
md5 = hashlib.md5(repr(sorted(args.items())).encode('utf-8'))
cache_tag = f'{dataset.name}-{get_feature_detector_name(detector_url)}-{md5.hexdigest()}'
cache_file = dnnlib.make_cache_dir_path('gan-metrics', cache_tag + '.pkl')
# Check if the file exists (all processes must agree).
flag = os.path.isfile(cache_file) if opts.rank == 0 else False
if opts.num_gpus > 1:
flag = torch.as_tensor(flag, dtype=torch.float32, device=opts.device)
torch.distributed.broadcast(tensor=flag, src=0)
flag = (float(flag.cpu()) != 0)
# Load.
if flag:
return FeatureStats.load(cache_file)
# Initialize.
num_items = len(dataset)
if max_items is not None:
num_items = min(num_items, max_items)
stats = FeatureStats(max_items=num_items, **stats_kwargs)
progress = opts.progress.sub(tag='dataset features', num_items=num_items, rel_lo=rel_lo, rel_hi=rel_hi)
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose)
# Main loop.
item_subset = [(i * opts.num_gpus + opts.rank) % num_items for i in range((num_items - 1) // opts.num_gpus + 1)]
for images, _labels in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, batch_size=batch_size, **data_loader_kwargs):
features = detector(images.to(opts.device), **detector_kwargs)
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank)
progress.update(stats.num_items)
# Save to cache.
if cache_file is not None and opts.rank == 0:
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
temp_file = cache_file + '.' + uuid.uuid4().hex
stats.save(temp_file)
os.replace(temp_file, cache_file) # atomic
return stats
#----------------------------------------------------------------------------
def compute_feature_stats_for_generator(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, batch_gen=None, jit=False, **stats_kwargs):
if batch_gen is None:
batch_gen = min(batch_size, 4)
assert batch_size % batch_gen == 0
# Setup generator and load labels.
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device)
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
# Image generation func.
def run_generator(z, c):
img = G(z=z, c=c, **opts.G_kwargs)
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return img
# JIT.
if jit:
z = torch.zeros([batch_gen, G.z_dim], device=opts.device)
c = torch.zeros([batch_gen, G.c_dim], device=opts.device)
run_generator = torch.jit.trace(run_generator, [z, c], check_trace=False)
# Initialize.
stats = FeatureStats(**stats_kwargs)
assert stats.max_items is not None
progress = opts.progress.sub(tag='generator features', num_items=stats.max_items, rel_lo=rel_lo, rel_hi=rel_hi)
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose)
# Main loop.
while not stats.is_full():
images = []
for _i in range(batch_size // batch_gen):
z = torch.randn([batch_gen, G.z_dim], device=opts.device)
c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_gen)]
c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device)
images.append(run_generator(z, c))
features = detector(torch.cat(images), **detector_kwargs)
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank)
progress.update(stats.num_items)
return stats
#----------------------------------------------------------------------------