Spaces:
Running
Running
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# NVIDIA CORPORATION and its licensors retain all intellectual property | |
# and proprietary rights in and to this software, related documentation | |
# and any modifications thereto. Any use, reproduction, disclosure or | |
# distribution of this software and related documentation without an express | |
# license agreement from NVIDIA CORPORATION is strictly prohibited. | |
"""Generate images using pretrained network pickle.""" | |
import os | |
import re | |
from typing import List, Optional | |
import click | |
import dnnlib | |
import numpy as np | |
import PIL.Image | |
import torch | |
import legacy | |
#---------------------------------------------------------------------------- | |
def num_range(s: str) -> List[int]: | |
'''Accept either a comma separated list of numbers 'a,b,c' or a range 'a-c' and return as a list of ints.''' | |
range_re = re.compile(r'^(\d+)-(\d+)$') | |
m = range_re.match(s) | |
if m: | |
return list(range(int(m.group(1)), int(m.group(2))+1)) | |
vals = s.split(',') | |
return [int(x) for x in vals] | |
#---------------------------------------------------------------------------- | |
def generate_images( | |
ctx: click.Context, | |
network_pkl: str, | |
seeds: Optional[List[int]], | |
truncation_psi: float, | |
noise_mode: str, | |
outdir: str, | |
class_idx: Optional[int], | |
projected_w: Optional[str] | |
): | |
"""Generate images using pretrained network pickle. | |
Examples: | |
\b | |
# Generate curated MetFaces images without truncation (Fig.10 left) | |
python generate.py --outdir=out --trunc=1 --seeds=85,265,297,849 \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl | |
\b | |
# Generate uncurated MetFaces images with truncation (Fig.12 upper left) | |
python generate.py --outdir=out --trunc=0.7 --seeds=600-605 \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl | |
\b | |
# Generate class conditional CIFAR-10 images (Fig.17 left, Car) | |
python generate.py --outdir=out --seeds=0-35 --class=1 \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/cifar10.pkl | |
\b | |
# Render an image from projected W | |
python generate.py --outdir=out --projected_w=projected_w.npz \\ | |
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metfaces.pkl | |
""" | |
print('Loading networks from "%s"...' % network_pkl) | |
device = torch.device('cuda') | |
with dnnlib.util.open_url(network_pkl) as f: | |
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore | |
os.makedirs(outdir, exist_ok=True) | |
# Synthesize the result of a W projection. | |
if projected_w is not None: | |
if seeds is not None: | |
print ('warn: --seeds is ignored when using --projected-w') | |
print(f'Generating images from projected W "{projected_w}"') | |
ws = np.load(projected_w)['w'] | |
ws = torch.tensor(ws, device=device) # pylint: disable=not-callable | |
assert ws.shape[1:] == (G.num_ws, G.w_dim) | |
for idx, w in enumerate(ws): | |
img = G.synthesis(w.unsqueeze(0), noise_mode=noise_mode) | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
img = PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/proj{idx:02d}.png') | |
return | |
if seeds is None: | |
ctx.fail('--seeds option is required when not using --projected-w') | |
# Labels. | |
label = torch.zeros([1, G.c_dim], device=device) | |
if G.c_dim != 0: | |
if class_idx is None: | |
ctx.fail('Must specify class label with --class when using a conditional network') | |
label[:, class_idx] = 1 | |
else: | |
if class_idx is not None: | |
print ('warn: --class=lbl ignored when running on an unconditional network') | |
# Generate images. | |
for seed_idx, seed in enumerate(seeds): | |
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds))) | |
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device) | |
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode) | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(f'{outdir}/seed{seed:04d}.png') | |
#---------------------------------------------------------------------------- | |
if __name__ == "__main__": | |
generate_images() # pylint: disable=no-value-for-parameter | |
#---------------------------------------------------------------------------- | |