Spaces:
Running
on
Zero
Running
on
Zero
Kunpeng Song
commited on
Commit
•
18976e3
1
Parent(s):
eefa462
fix zero
Browse files- .DS_Store +0 -0
- app.py +4 -7
- model_lib/moMA_generator.py +4 -7
- model_lib/modules.py +2 -5
- model_lib/utils.py +1 -1
.DS_Store
CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
|
|
app.py
CHANGED
@@ -15,18 +15,15 @@ device = torch.device('cuda')
|
|
15 |
seed_everything(0)
|
16 |
args = parse_args()
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
model = MoMA_main_modal(args).to(device, dtype=torch.float16)
|
21 |
-
generated_image = model.generate_images(rgb, subject, prompt, strength=strength, seed=seed)
|
22 |
-
return generated_image
|
23 |
|
24 |
@spaces.GPU
|
25 |
def inference(rgb, subject, prompt, strength, seed):
|
26 |
seed = int(seed) if seed else 0
|
27 |
seed = seed if not seed == 0 else np.random.randint(0,1000)
|
28 |
-
|
29 |
-
return
|
30 |
|
31 |
gr.Interface(
|
32 |
inference,
|
|
|
15 |
seed_everything(0)
|
16 |
args = parse_args()
|
17 |
|
18 |
+
from model_lib.modules import MoMA_main_modal
|
19 |
+
model = MoMA_main_modal(args).to(device, dtype=torch.float16)
|
|
|
|
|
|
|
20 |
|
21 |
@spaces.GPU
|
22 |
def inference(rgb, subject, prompt, strength, seed):
|
23 |
seed = int(seed) if seed else 0
|
24 |
seed = seed if not seed == 0 else np.random.randint(0,1000)
|
25 |
+
generated_image = model.generate_images(rgb, subject, prompt, strength=strength, seed=seed)
|
26 |
+
return generated_image
|
27 |
|
28 |
gr.Interface(
|
29 |
inference,
|
model_lib/moMA_generator.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
import spaces
|
2 |
-
|
3 |
-
|
4 |
import torch
|
5 |
from model_lib.attention_processor import IPAttnProcessor, IPAttnProcessor_Self, get_mask_from_cross
|
6 |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
@@ -98,7 +95,7 @@ class MoMA_generator:
|
|
98 |
vae=vae,
|
99 |
feature_extractor=None,
|
100 |
safety_checker=None,
|
101 |
-
)
|
102 |
|
103 |
self.unet = self.pipe.unet
|
104 |
add_function(self.pipe)
|
@@ -112,7 +109,7 @@ class MoMA_generator:
|
|
112 |
cross_attention_dim=768,
|
113 |
clip_embeddings_dim=1024,
|
114 |
clip_extra_context_tokens=4,
|
115 |
-
)
|
116 |
return image_proj_model
|
117 |
|
118 |
def set_ip_adapter(self):
|
@@ -129,9 +126,9 @@ class MoMA_generator:
|
|
129 |
block_id = int(name[len("down_blocks.")])
|
130 |
hidden_size = unet.config.block_out_channels[block_id]
|
131 |
if cross_attention_dim is None:
|
132 |
-
attn_procs[name] = IPAttnProcessor_Self(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4)
|
133 |
else:
|
134 |
-
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4)
|
135 |
unet.set_attn_processor(attn_procs)
|
136 |
|
137 |
@torch.inference_mode()
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from model_lib.attention_processor import IPAttnProcessor, IPAttnProcessor_Self, get_mask_from_cross
|
3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
|
|
95 |
vae=vae,
|
96 |
feature_extractor=None,
|
97 |
safety_checker=None,
|
98 |
+
).to(self.device)
|
99 |
|
100 |
self.unet = self.pipe.unet
|
101 |
add_function(self.pipe)
|
|
|
109 |
cross_attention_dim=768,
|
110 |
clip_embeddings_dim=1024,
|
111 |
clip_extra_context_tokens=4,
|
112 |
+
).to(self.device, dtype=torch.float16)
|
113 |
return image_proj_model
|
114 |
|
115 |
def set_ip_adapter(self):
|
|
|
126 |
block_id = int(name[len("down_blocks.")])
|
127 |
hidden_size = unet.config.block_out_channels[block_id]
|
128 |
if cross_attention_dim is None:
|
129 |
+
attn_procs[name] = IPAttnProcessor_Self(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4).to(self.device, dtype=torch.float16)
|
130 |
else:
|
131 |
+
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4).to(self.device, dtype=torch.float16)
|
132 |
unet.set_attn_processor(attn_procs)
|
133 |
|
134 |
@torch.inference_mode()
|
model_lib/modules.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
import spaces
|
2 |
-
|
3 |
import os
|
4 |
import torch
|
5 |
import torch.nn as nn
|
@@ -84,11 +82,11 @@ class MoMA_main_modal(nn.Module):
|
|
84 |
|
85 |
print('Loading MoMA: its Multi-modal LLM...')
|
86 |
model_name = get_model_name_from_path(args.model_path)
|
87 |
-
self.tokenizer_llava, self.model_llava, self.image_processor_llava, self.context_len_llava = load_pretrained_model(args.model_path, None, model_name, load_8bit=self.args.load_8bit, load_4bit=self.args.load_4bit)
|
88 |
|
89 |
add_function(self.model_llava)
|
90 |
|
91 |
-
self.mapping = LlamaMLP_mapping(4096,1024)
|
92 |
self.load_saved_components()
|
93 |
self.freeze_modules()
|
94 |
|
@@ -137,7 +135,6 @@ class MoMA_main_modal(nn.Module):
|
|
137 |
def reset(self):
|
138 |
self.moMA_generator.reset_all()
|
139 |
|
140 |
-
@torch.no_grad()
|
141 |
def generate_images(self, rgb_path, subject, prompt, strength=1.0, num=1, seed=0):
|
142 |
batch = Dataset_evaluate_MoMA(rgb_path, prompt, subject,self)
|
143 |
self.moMA_generator.set_selfAttn_strength(strength)
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import torch.nn as nn
|
|
|
82 |
|
83 |
print('Loading MoMA: its Multi-modal LLM...')
|
84 |
model_name = get_model_name_from_path(args.model_path)
|
85 |
+
self.tokenizer_llava, self.model_llava, self.image_processor_llava, self.context_len_llava = load_pretrained_model(args.model_path, None, model_name, load_8bit=self.args.load_8bit, load_4bit=self.args.load_4bit, device=args.device)
|
86 |
|
87 |
add_function(self.model_llava)
|
88 |
|
89 |
+
self.mapping = LlamaMLP_mapping(4096,1024).to(self.device, dtype=torch.float16)
|
90 |
self.load_saved_components()
|
91 |
self.freeze_modules()
|
92 |
|
|
|
135 |
def reset(self):
|
136 |
self.moMA_generator.reset_all()
|
137 |
|
|
|
138 |
def generate_images(self, rgb_path, subject, prompt, strength=1.0, num=1, seed=0):
|
139 |
batch = Dataset_evaluate_MoMA(rgb_path, prompt, subject,self)
|
140 |
self.moMA_generator.set_selfAttn_strength(strength)
|
model_lib/utils.py
CHANGED
@@ -10,7 +10,7 @@ def parse_args():
|
|
10 |
parser.add_argument("--model_path",type=str,default="KunpengSong/MoMA_llava_7b",help="fine tuned llava (Multi-modal LLM decoder)")
|
11 |
args = parser.parse_known_args()[0]
|
12 |
args.device = torch.device("cuda", 0)
|
13 |
-
args.load_8bit, args.load_4bit = False,
|
14 |
return args
|
15 |
|
16 |
def show_PIL_image(tensor):
|
|
|
10 |
parser.add_argument("--model_path",type=str,default="KunpengSong/MoMA_llava_7b",help="fine tuned llava (Multi-modal LLM decoder)")
|
11 |
args = parser.parse_known_args()[0]
|
12 |
args.device = torch.device("cuda", 0)
|
13 |
+
args.load_8bit, args.load_4bit = False, True
|
14 |
return args
|
15 |
|
16 |
def show_PIL_image(tensor):
|