yizhangliu
commited on
Commit
•
c74712e
1
Parent(s):
5edb91e
Test Kolors for inpainting
Browse files- app.py +34 -8
- kolors/__init__.py +0 -0
- kolors/models/__init__.py +0 -0
- kolors/models/configuration_chatglm.py +61 -0
- kolors/models/controlnet.py +887 -0
- kolors/models/modeling_chatglm.py +1298 -0
- kolors/models/tokenization_chatglm.py +300 -0
- kolors/models/unet_2d_condition.py +1318 -0
- kolors/pipelines/__init__.py +0 -0
- kolors/pipelines/pipeline_controlnet_xl_kolors_img2img.py +1365 -0
- kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256.py +841 -0
- kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_inpainting.py +1790 -0
- kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.py +948 -0
app.py
CHANGED
@@ -45,7 +45,7 @@ plt = matplotlib.pyplot
|
|
45 |
|
46 |
groundingdino_enable = True
|
47 |
sam_enable = True
|
48 |
-
inpainting_enable =
|
49 |
ram_enable = False
|
50 |
|
51 |
lama_cleaner_enable = True
|
@@ -79,6 +79,11 @@ from io import BytesIO
|
|
79 |
from diffusers import StableDiffusionInpaintPipeline
|
80 |
from huggingface_hub import hf_hub_download
|
81 |
|
|
|
|
|
|
|
|
|
|
|
82 |
from util_computer import computer_info
|
83 |
|
84 |
# relate anything
|
@@ -125,6 +130,9 @@ kosmos_processor = None
|
|
125 |
|
126 |
brush_color = "#00FFFF"
|
127 |
|
|
|
|
|
|
|
128 |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
129 |
args = SLConfig.fromfile(model_config_path)
|
130 |
model = build_model(args)
|
@@ -321,13 +329,31 @@ def load_sd_model(device):
|
|
321 |
logger.info(f"initialize stable-diffusion-inpainting...")
|
322 |
sd_model = None
|
323 |
if os.environ.get('IS_MY_DEBUG') is None:
|
324 |
-
sd_model = StableDiffusionInpaintPipeline.from_pretrained(
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
)
|
330 |
-
|
|
|
|
|
331 |
|
332 |
def load_lama_cleaner_model(device):
|
333 |
# initialize lama_cleaner
|
@@ -986,7 +1012,7 @@ def main_gradio(args):
|
|
986 |
print(f'torch.cuda.is_available = {torch.cuda.is_available()}')
|
987 |
computer_info()
|
988 |
block.queue(max_size=10, api_open=False)
|
989 |
-
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
|
990 |
|
991 |
if __name__ == "__main__":
|
992 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
|
|
45 |
|
46 |
groundingdino_enable = True
|
47 |
sam_enable = True
|
48 |
+
inpainting_enable = True
|
49 |
ram_enable = False
|
50 |
|
51 |
lama_cleaner_enable = True
|
|
|
79 |
from diffusers import StableDiffusionInpaintPipeline
|
80 |
from huggingface_hub import hf_hub_download
|
81 |
|
82 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
|
83 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
84 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
85 |
+
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
|
86 |
+
|
87 |
from util_computer import computer_info
|
88 |
|
89 |
# relate anything
|
|
|
130 |
|
131 |
brush_color = "#00FFFF"
|
132 |
|
133 |
+
MAX_SEED = np.iinfo(np.int32).max
|
134 |
+
MAX_IMAGE_SIZE = 1024
|
135 |
+
|
136 |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
137 |
args = SLConfig.fromfile(model_config_path)
|
138 |
model = build_model(args)
|
|
|
329 |
logger.info(f"initialize stable-diffusion-inpainting...")
|
330 |
sd_model = None
|
331 |
if os.environ.get('IS_MY_DEBUG') is None:
|
332 |
+
# sd_model = StableDiffusionInpaintPipeline.from_pretrained(
|
333 |
+
# "runwayml/stable-diffusion-inpainting",
|
334 |
+
# revision="fp16",
|
335 |
+
# # "stabilityai/stable-diffusion-2-inpainting",
|
336 |
+
# torch_dtype=torch.float16,
|
337 |
+
# )
|
338 |
+
# sd_model = sd_model.to(device)
|
339 |
+
|
340 |
+
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
|
341 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
|
342 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
343 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
344 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
345 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
346 |
+
|
347 |
+
sd_model = StableDiffusionXLInpaintPipeline(
|
348 |
+
vae=vae,
|
349 |
+
text_encoder=text_encoder,
|
350 |
+
tokenizer=tokenizer,
|
351 |
+
unet=unet,
|
352 |
+
scheduler=scheduler
|
353 |
)
|
354 |
+
|
355 |
+
sd_model.to(device)
|
356 |
+
sd_model.enable_attention_slicing()
|
357 |
|
358 |
def load_lama_cleaner_model(device):
|
359 |
# initialize lama_cleaner
|
|
|
1012 |
print(f'torch.cuda.is_available = {torch.cuda.is_available()}')
|
1013 |
computer_info()
|
1014 |
block.queue(max_size=10, api_open=False)
|
1015 |
+
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share, show_api=False)
|
1016 |
|
1017 |
if __name__ == "__main__":
|
1018 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
kolors/__init__.py
ADDED
File without changes
|
kolors/models/__init__.py
ADDED
File without changes
|
kolors/models/configuration_chatglm.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class ChatGLMConfig(PretrainedConfig):
|
5 |
+
model_type = "chatglm"
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
num_layers=28,
|
9 |
+
padded_vocab_size=65024,
|
10 |
+
hidden_size=4096,
|
11 |
+
ffn_hidden_size=13696,
|
12 |
+
kv_channels=128,
|
13 |
+
num_attention_heads=32,
|
14 |
+
seq_length=2048,
|
15 |
+
hidden_dropout=0.0,
|
16 |
+
classifier_dropout=None,
|
17 |
+
attention_dropout=0.0,
|
18 |
+
layernorm_epsilon=1e-5,
|
19 |
+
rmsnorm=True,
|
20 |
+
apply_residual_connection_post_layernorm=False,
|
21 |
+
post_layer_norm=True,
|
22 |
+
add_bias_linear=False,
|
23 |
+
add_qkv_bias=False,
|
24 |
+
bias_dropout_fusion=True,
|
25 |
+
multi_query_attention=False,
|
26 |
+
multi_query_group_num=1,
|
27 |
+
apply_query_key_layer_scaling=True,
|
28 |
+
attention_softmax_in_fp32=True,
|
29 |
+
fp32_residual_connection=False,
|
30 |
+
quantization_bit=0,
|
31 |
+
pre_seq_len=None,
|
32 |
+
prefix_projection=False,
|
33 |
+
**kwargs
|
34 |
+
):
|
35 |
+
self.num_layers = num_layers
|
36 |
+
self.vocab_size = padded_vocab_size
|
37 |
+
self.padded_vocab_size = padded_vocab_size
|
38 |
+
self.hidden_size = hidden_size
|
39 |
+
self.ffn_hidden_size = ffn_hidden_size
|
40 |
+
self.kv_channels = kv_channels
|
41 |
+
self.num_attention_heads = num_attention_heads
|
42 |
+
self.seq_length = seq_length
|
43 |
+
self.hidden_dropout = hidden_dropout
|
44 |
+
self.classifier_dropout = classifier_dropout
|
45 |
+
self.attention_dropout = attention_dropout
|
46 |
+
self.layernorm_epsilon = layernorm_epsilon
|
47 |
+
self.rmsnorm = rmsnorm
|
48 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
49 |
+
self.post_layer_norm = post_layer_norm
|
50 |
+
self.add_bias_linear = add_bias_linear
|
51 |
+
self.add_qkv_bias = add_qkv_bias
|
52 |
+
self.bias_dropout_fusion = bias_dropout_fusion
|
53 |
+
self.multi_query_attention = multi_query_attention
|
54 |
+
self.multi_query_group_num = multi_query_group_num
|
55 |
+
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
|
56 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
57 |
+
self.fp32_residual_connection = fp32_residual_connection
|
58 |
+
self.quantization_bit = quantization_bit
|
59 |
+
self.pre_seq_len = pre_seq_len
|
60 |
+
self.prefix_projection = prefix_projection
|
61 |
+
super().__init__(**kwargs)
|
kolors/models/controlnet.py
ADDED
@@ -0,0 +1,887 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
from torch.nn import functional as F
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.attention_processor import (
|
25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
+
CROSS_ATTENTION_PROCESSORS,
|
27 |
+
AttentionProcessor,
|
28 |
+
AttnAddedKVProcessor,
|
29 |
+
AttnProcessor,
|
30 |
+
)
|
31 |
+
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
33 |
+
|
34 |
+
try:
|
35 |
+
from diffusers.unets.unet_2d_blocks import (
|
36 |
+
CrossAttnDownBlock2D,
|
37 |
+
DownBlock2D,
|
38 |
+
UNetMidBlock2D,
|
39 |
+
UNetMidBlock2DCrossAttn,
|
40 |
+
get_down_block,
|
41 |
+
)
|
42 |
+
from diffusers.unets.unet_2d_condition import UNet2DConditionModel
|
43 |
+
except:
|
44 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
45 |
+
CrossAttnDownBlock2D,
|
46 |
+
DownBlock2D,
|
47 |
+
UNetMidBlock2D,
|
48 |
+
UNetMidBlock2DCrossAttn,
|
49 |
+
get_down_block,
|
50 |
+
)
|
51 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
56 |
+
|
57 |
+
|
58 |
+
@dataclass
|
59 |
+
class ControlNetOutput(BaseOutput):
|
60 |
+
"""
|
61 |
+
The output of [`ControlNetModel`].
|
62 |
+
|
63 |
+
Args:
|
64 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
65 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
66 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
67 |
+
used to condition the original UNet's downsampling activations.
|
68 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
69 |
+
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
|
70 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
71 |
+
Output can be used to condition the original UNet's middle block activation.
|
72 |
+
"""
|
73 |
+
|
74 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
75 |
+
mid_block_res_sample: torch.Tensor
|
76 |
+
|
77 |
+
|
78 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
79 |
+
"""
|
80 |
+
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
81 |
+
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
82 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
83 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
84 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
85 |
+
model) to encode image-space conditions ... into feature maps ..."
|
86 |
+
"""
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
conditioning_embedding_channels: int,
|
91 |
+
conditioning_channels: int = 3,
|
92 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
97 |
+
|
98 |
+
self.blocks = nn.ModuleList([])
|
99 |
+
|
100 |
+
for i in range(len(block_out_channels) - 1):
|
101 |
+
channel_in = block_out_channels[i]
|
102 |
+
channel_out = block_out_channels[i + 1]
|
103 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
104 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
105 |
+
|
106 |
+
self.conv_out = zero_module(
|
107 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
108 |
+
)
|
109 |
+
|
110 |
+
def forward(self, conditioning):
|
111 |
+
embedding = self.conv_in(conditioning)
|
112 |
+
embedding = F.silu(embedding)
|
113 |
+
|
114 |
+
for block in self.blocks:
|
115 |
+
embedding = block(embedding)
|
116 |
+
embedding = F.silu(embedding)
|
117 |
+
|
118 |
+
embedding = self.conv_out(embedding)
|
119 |
+
|
120 |
+
return embedding
|
121 |
+
|
122 |
+
|
123 |
+
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
124 |
+
"""
|
125 |
+
A ControlNet model.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
in_channels (`int`, defaults to 4):
|
129 |
+
The number of channels in the input sample.
|
130 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
131 |
+
Whether to flip the sin to cos in the time embedding.
|
132 |
+
freq_shift (`int`, defaults to 0):
|
133 |
+
The frequency shift to apply to the time embedding.
|
134 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
135 |
+
The tuple of downsample blocks to use.
|
136 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
137 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
138 |
+
The tuple of output channels for each block.
|
139 |
+
layers_per_block (`int`, defaults to 2):
|
140 |
+
The number of layers per block.
|
141 |
+
downsample_padding (`int`, defaults to 1):
|
142 |
+
The padding to use for the downsampling convolution.
|
143 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
144 |
+
The scale factor to use for the mid block.
|
145 |
+
act_fn (`str`, defaults to "silu"):
|
146 |
+
The activation function to use.
|
147 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
148 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
149 |
+
in post-processing.
|
150 |
+
norm_eps (`float`, defaults to 1e-5):
|
151 |
+
The epsilon to use for the normalization.
|
152 |
+
cross_attention_dim (`int`, defaults to 1280):
|
153 |
+
The dimension of the cross attention features.
|
154 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
155 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
156 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
157 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
158 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
159 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
160 |
+
dimension to `cross_attention_dim`.
|
161 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
162 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
163 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
164 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
165 |
+
The dimension of the attention heads.
|
166 |
+
use_linear_projection (`bool`, defaults to `False`):
|
167 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
168 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
169 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
170 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
171 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
172 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
173 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
174 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
175 |
+
class conditioning with `class_embed_type` equal to `None`.
|
176 |
+
upcast_attention (`bool`, defaults to `False`):
|
177 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
178 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
179 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
180 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
181 |
+
`class_embed_type="projection"`.
|
182 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
183 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
184 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
185 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
186 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
187 |
+
TODO(Patrick) - unused parameter.
|
188 |
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
189 |
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
190 |
+
"""
|
191 |
+
|
192 |
+
_supports_gradient_checkpointing = True
|
193 |
+
|
194 |
+
@register_to_config
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
in_channels: int = 4,
|
198 |
+
conditioning_channels: int = 3,
|
199 |
+
flip_sin_to_cos: bool = True,
|
200 |
+
freq_shift: int = 0,
|
201 |
+
down_block_types: Tuple[str, ...] = (
|
202 |
+
"CrossAttnDownBlock2D",
|
203 |
+
"CrossAttnDownBlock2D",
|
204 |
+
"CrossAttnDownBlock2D",
|
205 |
+
"DownBlock2D",
|
206 |
+
),
|
207 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
208 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
209 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
210 |
+
layers_per_block: int = 2,
|
211 |
+
downsample_padding: int = 1,
|
212 |
+
mid_block_scale_factor: float = 1,
|
213 |
+
act_fn: str = "silu",
|
214 |
+
norm_num_groups: Optional[int] = 32,
|
215 |
+
norm_eps: float = 1e-5,
|
216 |
+
cross_attention_dim: int = 1280,
|
217 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
218 |
+
encoder_hid_dim: Optional[int] = None,
|
219 |
+
encoder_hid_dim_type: Optional[str] = None,
|
220 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
221 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
222 |
+
use_linear_projection: bool = False,
|
223 |
+
class_embed_type: Optional[str] = None,
|
224 |
+
addition_embed_type: Optional[str] = None,
|
225 |
+
addition_time_embed_dim: Optional[int] = None,
|
226 |
+
num_class_embeds: Optional[int] = None,
|
227 |
+
upcast_attention: bool = False,
|
228 |
+
resnet_time_scale_shift: str = "default",
|
229 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
230 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
231 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
232 |
+
global_pool_conditions: bool = False,
|
233 |
+
addition_embed_type_num_heads: int = 64,
|
234 |
+
):
|
235 |
+
super().__init__()
|
236 |
+
|
237 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
238 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
239 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
240 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
241 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
242 |
+
# which is why we correct for the naming here.
|
243 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
244 |
+
|
245 |
+
# Check inputs
|
246 |
+
if len(block_out_channels) != len(down_block_types):
|
247 |
+
raise ValueError(
|
248 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
249 |
+
)
|
250 |
+
|
251 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
257 |
+
raise ValueError(
|
258 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
259 |
+
)
|
260 |
+
|
261 |
+
if isinstance(transformer_layers_per_block, int):
|
262 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
263 |
+
|
264 |
+
# input
|
265 |
+
conv_in_kernel = 3
|
266 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
267 |
+
self.conv_in = nn.Conv2d(
|
268 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
269 |
+
)
|
270 |
+
|
271 |
+
# time
|
272 |
+
time_embed_dim = block_out_channels[0] * 4
|
273 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
274 |
+
timestep_input_dim = block_out_channels[0]
|
275 |
+
self.time_embedding = TimestepEmbedding(
|
276 |
+
timestep_input_dim,
|
277 |
+
time_embed_dim,
|
278 |
+
act_fn=act_fn,
|
279 |
+
)
|
280 |
+
|
281 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
282 |
+
encoder_hid_dim_type = "text_proj"
|
283 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
284 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
285 |
+
|
286 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
287 |
+
raise ValueError(
|
288 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
289 |
+
)
|
290 |
+
|
291 |
+
if encoder_hid_dim_type == "text_proj":
|
292 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
293 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
294 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
295 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
296 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
297 |
+
self.encoder_hid_proj = TextImageProjection(
|
298 |
+
text_embed_dim=encoder_hid_dim,
|
299 |
+
image_embed_dim=cross_attention_dim,
|
300 |
+
cross_attention_dim=cross_attention_dim,
|
301 |
+
)
|
302 |
+
|
303 |
+
elif encoder_hid_dim_type is not None:
|
304 |
+
raise ValueError(
|
305 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
self.encoder_hid_proj = None
|
309 |
+
|
310 |
+
# class embedding
|
311 |
+
if class_embed_type is None and num_class_embeds is not None:
|
312 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
313 |
+
elif class_embed_type == "timestep":
|
314 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
315 |
+
elif class_embed_type == "identity":
|
316 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
317 |
+
elif class_embed_type == "projection":
|
318 |
+
if projection_class_embeddings_input_dim is None:
|
319 |
+
raise ValueError(
|
320 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
321 |
+
)
|
322 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
323 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
324 |
+
# 2. it projects from an arbitrary input dimension.
|
325 |
+
#
|
326 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
327 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
328 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
329 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
330 |
+
else:
|
331 |
+
self.class_embedding = None
|
332 |
+
|
333 |
+
if addition_embed_type == "text":
|
334 |
+
if encoder_hid_dim is not None:
|
335 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
336 |
+
else:
|
337 |
+
text_time_embedding_from_dim = cross_attention_dim
|
338 |
+
|
339 |
+
self.add_embedding = TextTimeEmbedding(
|
340 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
341 |
+
)
|
342 |
+
elif addition_embed_type == "text_image":
|
343 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
344 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
345 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
346 |
+
self.add_embedding = TextImageTimeEmbedding(
|
347 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
348 |
+
)
|
349 |
+
elif addition_embed_type == "text_time":
|
350 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
351 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
352 |
+
|
353 |
+
elif addition_embed_type is not None:
|
354 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
355 |
+
|
356 |
+
# control net conditioning embedding
|
357 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
358 |
+
conditioning_embedding_channels=block_out_channels[0],
|
359 |
+
block_out_channels=conditioning_embedding_out_channels,
|
360 |
+
conditioning_channels=conditioning_channels,
|
361 |
+
)
|
362 |
+
|
363 |
+
self.down_blocks = nn.ModuleList([])
|
364 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
365 |
+
|
366 |
+
if isinstance(only_cross_attention, bool):
|
367 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
368 |
+
|
369 |
+
if isinstance(attention_head_dim, int):
|
370 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
371 |
+
|
372 |
+
if isinstance(num_attention_heads, int):
|
373 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
374 |
+
|
375 |
+
# down
|
376 |
+
output_channel = block_out_channels[0]
|
377 |
+
|
378 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
379 |
+
controlnet_block = zero_module(controlnet_block)
|
380 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
381 |
+
|
382 |
+
for i, down_block_type in enumerate(down_block_types):
|
383 |
+
input_channel = output_channel
|
384 |
+
output_channel = block_out_channels[i]
|
385 |
+
is_final_block = i == len(block_out_channels) - 1
|
386 |
+
|
387 |
+
down_block = get_down_block(
|
388 |
+
down_block_type,
|
389 |
+
num_layers=layers_per_block,
|
390 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
391 |
+
in_channels=input_channel,
|
392 |
+
out_channels=output_channel,
|
393 |
+
temb_channels=time_embed_dim,
|
394 |
+
add_downsample=not is_final_block,
|
395 |
+
resnet_eps=norm_eps,
|
396 |
+
resnet_act_fn=act_fn,
|
397 |
+
resnet_groups=norm_num_groups,
|
398 |
+
cross_attention_dim=cross_attention_dim,
|
399 |
+
num_attention_heads=num_attention_heads[i],
|
400 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
401 |
+
downsample_padding=downsample_padding,
|
402 |
+
use_linear_projection=use_linear_projection,
|
403 |
+
only_cross_attention=only_cross_attention[i],
|
404 |
+
upcast_attention=upcast_attention,
|
405 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
406 |
+
)
|
407 |
+
self.down_blocks.append(down_block)
|
408 |
+
|
409 |
+
for _ in range(layers_per_block):
|
410 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
411 |
+
controlnet_block = zero_module(controlnet_block)
|
412 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
413 |
+
|
414 |
+
if not is_final_block:
|
415 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
416 |
+
controlnet_block = zero_module(controlnet_block)
|
417 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
418 |
+
|
419 |
+
# mid
|
420 |
+
mid_block_channel = block_out_channels[-1]
|
421 |
+
|
422 |
+
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
423 |
+
controlnet_block = zero_module(controlnet_block)
|
424 |
+
self.controlnet_mid_block = controlnet_block
|
425 |
+
|
426 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
427 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
428 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
429 |
+
in_channels=mid_block_channel,
|
430 |
+
temb_channels=time_embed_dim,
|
431 |
+
resnet_eps=norm_eps,
|
432 |
+
resnet_act_fn=act_fn,
|
433 |
+
output_scale_factor=mid_block_scale_factor,
|
434 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
435 |
+
cross_attention_dim=cross_attention_dim,
|
436 |
+
num_attention_heads=num_attention_heads[-1],
|
437 |
+
resnet_groups=norm_num_groups,
|
438 |
+
use_linear_projection=use_linear_projection,
|
439 |
+
upcast_attention=upcast_attention,
|
440 |
+
)
|
441 |
+
elif mid_block_type == "UNetMidBlock2D":
|
442 |
+
self.mid_block = UNetMidBlock2D(
|
443 |
+
in_channels=block_out_channels[-1],
|
444 |
+
temb_channels=time_embed_dim,
|
445 |
+
num_layers=0,
|
446 |
+
resnet_eps=norm_eps,
|
447 |
+
resnet_act_fn=act_fn,
|
448 |
+
output_scale_factor=mid_block_scale_factor,
|
449 |
+
resnet_groups=norm_num_groups,
|
450 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
451 |
+
add_attention=False,
|
452 |
+
)
|
453 |
+
else:
|
454 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
455 |
+
|
456 |
+
@classmethod
|
457 |
+
def from_unet(
|
458 |
+
cls,
|
459 |
+
unet: UNet2DConditionModel,
|
460 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
461 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
462 |
+
load_weights_from_unet: bool = True,
|
463 |
+
conditioning_channels: int = 3,
|
464 |
+
):
|
465 |
+
r"""
|
466 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
467 |
+
|
468 |
+
Parameters:
|
469 |
+
unet (`UNet2DConditionModel`):
|
470 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
471 |
+
where applicable.
|
472 |
+
"""
|
473 |
+
transformer_layers_per_block = (
|
474 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
475 |
+
)
|
476 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
477 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
478 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
479 |
+
addition_time_embed_dim = (
|
480 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
481 |
+
)
|
482 |
+
|
483 |
+
controlnet = cls(
|
484 |
+
encoder_hid_dim=encoder_hid_dim,
|
485 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
486 |
+
addition_embed_type=addition_embed_type,
|
487 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
488 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
489 |
+
in_channels=unet.config.in_channels,
|
490 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
491 |
+
freq_shift=unet.config.freq_shift,
|
492 |
+
down_block_types=unet.config.down_block_types,
|
493 |
+
only_cross_attention=unet.config.only_cross_attention,
|
494 |
+
block_out_channels=unet.config.block_out_channels,
|
495 |
+
layers_per_block=unet.config.layers_per_block,
|
496 |
+
downsample_padding=unet.config.downsample_padding,
|
497 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
498 |
+
act_fn=unet.config.act_fn,
|
499 |
+
norm_num_groups=unet.config.norm_num_groups,
|
500 |
+
norm_eps=unet.config.norm_eps,
|
501 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
502 |
+
attention_head_dim=unet.config.attention_head_dim,
|
503 |
+
num_attention_heads=unet.config.num_attention_heads,
|
504 |
+
use_linear_projection=unet.config.use_linear_projection,
|
505 |
+
class_embed_type=unet.config.class_embed_type,
|
506 |
+
num_class_embeds=unet.config.num_class_embeds,
|
507 |
+
upcast_attention=unet.config.upcast_attention,
|
508 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
509 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
510 |
+
mid_block_type=unet.config.mid_block_type,
|
511 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
512 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
513 |
+
conditioning_channels=conditioning_channels,
|
514 |
+
)
|
515 |
+
|
516 |
+
if load_weights_from_unet:
|
517 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
518 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
519 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
520 |
+
|
521 |
+
if controlnet.class_embedding:
|
522 |
+
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
523 |
+
|
524 |
+
if hasattr(controlnet, "add_embedding"):
|
525 |
+
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
526 |
+
|
527 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
528 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
529 |
+
|
530 |
+
return controlnet
|
531 |
+
|
532 |
+
@property
|
533 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
534 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
535 |
+
r"""
|
536 |
+
Returns:
|
537 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
538 |
+
indexed by its weight name.
|
539 |
+
"""
|
540 |
+
# set recursively
|
541 |
+
processors = {}
|
542 |
+
|
543 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
544 |
+
if hasattr(module, "get_processor"):
|
545 |
+
processors[f"{name}.processor"] = module.get_processor()
|
546 |
+
|
547 |
+
for sub_name, child in module.named_children():
|
548 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
549 |
+
|
550 |
+
return processors
|
551 |
+
|
552 |
+
for name, module in self.named_children():
|
553 |
+
fn_recursive_add_processors(name, module, processors)
|
554 |
+
|
555 |
+
return processors
|
556 |
+
|
557 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
558 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
559 |
+
r"""
|
560 |
+
Sets the attention processor to use to compute attention.
|
561 |
+
|
562 |
+
Parameters:
|
563 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
564 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
565 |
+
for **all** `Attention` layers.
|
566 |
+
|
567 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
568 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
569 |
+
|
570 |
+
"""
|
571 |
+
count = len(self.attn_processors.keys())
|
572 |
+
|
573 |
+
if isinstance(processor, dict) and len(processor) != count:
|
574 |
+
raise ValueError(
|
575 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
576 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
577 |
+
)
|
578 |
+
|
579 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
580 |
+
if hasattr(module, "set_processor"):
|
581 |
+
if not isinstance(processor, dict):
|
582 |
+
module.set_processor(processor)
|
583 |
+
else:
|
584 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
585 |
+
|
586 |
+
for sub_name, child in module.named_children():
|
587 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
588 |
+
|
589 |
+
for name, module in self.named_children():
|
590 |
+
fn_recursive_attn_processor(name, module, processor)
|
591 |
+
|
592 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
593 |
+
def set_default_attn_processor(self):
|
594 |
+
"""
|
595 |
+
Disables custom attention processors and sets the default attention implementation.
|
596 |
+
"""
|
597 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
598 |
+
processor = AttnAddedKVProcessor()
|
599 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
600 |
+
processor = AttnProcessor()
|
601 |
+
else:
|
602 |
+
raise ValueError(
|
603 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
604 |
+
)
|
605 |
+
|
606 |
+
self.set_attn_processor(processor)
|
607 |
+
|
608 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
609 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
610 |
+
r"""
|
611 |
+
Enable sliced attention computation.
|
612 |
+
|
613 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
614 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
615 |
+
|
616 |
+
Args:
|
617 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
618 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
619 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
620 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
621 |
+
must be a multiple of `slice_size`.
|
622 |
+
"""
|
623 |
+
sliceable_head_dims = []
|
624 |
+
|
625 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
626 |
+
if hasattr(module, "set_attention_slice"):
|
627 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
628 |
+
|
629 |
+
for child in module.children():
|
630 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
631 |
+
|
632 |
+
# retrieve number of attention layers
|
633 |
+
for module in self.children():
|
634 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
635 |
+
|
636 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
637 |
+
|
638 |
+
if slice_size == "auto":
|
639 |
+
# half the attention head size is usually a good trade-off between
|
640 |
+
# speed and memory
|
641 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
642 |
+
elif slice_size == "max":
|
643 |
+
# make smallest slice possible
|
644 |
+
slice_size = num_sliceable_layers * [1]
|
645 |
+
|
646 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
647 |
+
|
648 |
+
if len(slice_size) != len(sliceable_head_dims):
|
649 |
+
raise ValueError(
|
650 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
651 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
652 |
+
)
|
653 |
+
|
654 |
+
for i in range(len(slice_size)):
|
655 |
+
size = slice_size[i]
|
656 |
+
dim = sliceable_head_dims[i]
|
657 |
+
if size is not None and size > dim:
|
658 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
659 |
+
|
660 |
+
# Recursively walk through all the children.
|
661 |
+
# Any children which exposes the set_attention_slice method
|
662 |
+
# gets the message
|
663 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
664 |
+
if hasattr(module, "set_attention_slice"):
|
665 |
+
module.set_attention_slice(slice_size.pop())
|
666 |
+
|
667 |
+
for child in module.children():
|
668 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
669 |
+
|
670 |
+
reversed_slice_size = list(reversed(slice_size))
|
671 |
+
for module in self.children():
|
672 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
673 |
+
|
674 |
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
675 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
676 |
+
module.gradient_checkpointing = value
|
677 |
+
|
678 |
+
def forward(
|
679 |
+
self,
|
680 |
+
sample: torch.Tensor,
|
681 |
+
timestep: Union[torch.Tensor, float, int],
|
682 |
+
encoder_hidden_states: torch.Tensor,
|
683 |
+
controlnet_cond: torch.Tensor,
|
684 |
+
conditioning_scale: float = 1.0,
|
685 |
+
class_labels: Optional[torch.Tensor] = None,
|
686 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
687 |
+
attention_mask: Optional[torch.Tensor] = None,
|
688 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
689 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
690 |
+
guess_mode: bool = False,
|
691 |
+
return_dict: bool = True,
|
692 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
693 |
+
"""
|
694 |
+
The [`ControlNetModel`] forward method.
|
695 |
+
|
696 |
+
Args:
|
697 |
+
sample (`torch.Tensor`):
|
698 |
+
The noisy input tensor.
|
699 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
700 |
+
The number of timesteps to denoise an input.
|
701 |
+
encoder_hidden_states (`torch.Tensor`):
|
702 |
+
The encoder hidden states.
|
703 |
+
controlnet_cond (`torch.Tensor`):
|
704 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
705 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
706 |
+
The scale factor for ControlNet outputs.
|
707 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
708 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
709 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
710 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
711 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
712 |
+
embeddings.
|
713 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
714 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
715 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
716 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
717 |
+
added_cond_kwargs (`dict`):
|
718 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
719 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
720 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
721 |
+
guess_mode (`bool`, defaults to `False`):
|
722 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
723 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
724 |
+
return_dict (`bool`, defaults to `True`):
|
725 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
726 |
+
|
727 |
+
Returns:
|
728 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
729 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
730 |
+
returned where the first element is the sample tensor.
|
731 |
+
"""
|
732 |
+
# check channel order
|
733 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
734 |
+
|
735 |
+
if channel_order == "rgb":
|
736 |
+
# in rgb order by default
|
737 |
+
...
|
738 |
+
elif channel_order == "bgr":
|
739 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
740 |
+
else:
|
741 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
742 |
+
|
743 |
+
# prepare attention_mask
|
744 |
+
if attention_mask is not None:
|
745 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
746 |
+
attention_mask = attention_mask.unsqueeze(1)
|
747 |
+
|
748 |
+
#Todo
|
749 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
750 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
751 |
+
|
752 |
+
# 1. time
|
753 |
+
timesteps = timestep
|
754 |
+
if not torch.is_tensor(timesteps):
|
755 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
756 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
757 |
+
is_mps = sample.device.type == "mps"
|
758 |
+
if isinstance(timestep, float):
|
759 |
+
dtype = torch.float32 if is_mps else torch.float64
|
760 |
+
else:
|
761 |
+
dtype = torch.int32 if is_mps else torch.int64
|
762 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
763 |
+
elif len(timesteps.shape) == 0:
|
764 |
+
timesteps = timesteps[None].to(sample.device)
|
765 |
+
|
766 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
767 |
+
timesteps = timesteps.expand(sample.shape[0])
|
768 |
+
|
769 |
+
t_emb = self.time_proj(timesteps)
|
770 |
+
|
771 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
772 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
773 |
+
# there might be better ways to encapsulate this.
|
774 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
775 |
+
|
776 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
777 |
+
aug_emb = None
|
778 |
+
|
779 |
+
if self.class_embedding is not None:
|
780 |
+
if class_labels is None:
|
781 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
782 |
+
|
783 |
+
if self.config.class_embed_type == "timestep":
|
784 |
+
class_labels = self.time_proj(class_labels)
|
785 |
+
|
786 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
787 |
+
emb = emb + class_emb
|
788 |
+
|
789 |
+
if self.config.addition_embed_type is not None:
|
790 |
+
if self.config.addition_embed_type == "text":
|
791 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
792 |
+
|
793 |
+
elif self.config.addition_embed_type == "text_time":
|
794 |
+
if "text_embeds" not in added_cond_kwargs:
|
795 |
+
raise ValueError(
|
796 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
797 |
+
)
|
798 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
799 |
+
if "time_ids" not in added_cond_kwargs:
|
800 |
+
raise ValueError(
|
801 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
802 |
+
)
|
803 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
804 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
805 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
806 |
+
|
807 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
808 |
+
add_embeds = add_embeds.to(emb.dtype)
|
809 |
+
aug_emb = self.add_embedding(add_embeds)
|
810 |
+
|
811 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
812 |
+
|
813 |
+
# 2. pre-process
|
814 |
+
sample = self.conv_in(sample)
|
815 |
+
|
816 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
817 |
+
sample = sample + controlnet_cond
|
818 |
+
|
819 |
+
# 3. down
|
820 |
+
down_block_res_samples = (sample,)
|
821 |
+
for downsample_block in self.down_blocks:
|
822 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
823 |
+
sample, res_samples = downsample_block(
|
824 |
+
hidden_states=sample,
|
825 |
+
temb=emb,
|
826 |
+
encoder_hidden_states=encoder_hidden_states,
|
827 |
+
attention_mask=attention_mask,
|
828 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
829 |
+
)
|
830 |
+
else:
|
831 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
832 |
+
|
833 |
+
down_block_res_samples += res_samples
|
834 |
+
|
835 |
+
# 4. mid
|
836 |
+
if self.mid_block is not None:
|
837 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
838 |
+
sample = self.mid_block(
|
839 |
+
sample,
|
840 |
+
emb,
|
841 |
+
encoder_hidden_states=encoder_hidden_states,
|
842 |
+
attention_mask=attention_mask,
|
843 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
844 |
+
)
|
845 |
+
else:
|
846 |
+
sample = self.mid_block(sample, emb)
|
847 |
+
|
848 |
+
# 5. Control net blocks
|
849 |
+
|
850 |
+
controlnet_down_block_res_samples = ()
|
851 |
+
|
852 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
853 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
854 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
855 |
+
|
856 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
857 |
+
|
858 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
859 |
+
|
860 |
+
# 6. scaling
|
861 |
+
if guess_mode and not self.config.global_pool_conditions:
|
862 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
863 |
+
scales = scales * conditioning_scale
|
864 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
865 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
866 |
+
else:
|
867 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
868 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
869 |
+
|
870 |
+
if self.config.global_pool_conditions:
|
871 |
+
down_block_res_samples = [
|
872 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
873 |
+
]
|
874 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
875 |
+
|
876 |
+
if not return_dict:
|
877 |
+
return (down_block_res_samples, mid_block_res_sample)
|
878 |
+
|
879 |
+
return ControlNetOutput(
|
880 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
881 |
+
)
|
882 |
+
|
883 |
+
|
884 |
+
def zero_module(module):
|
885 |
+
for p in module.parameters():
|
886 |
+
nn.init.zeros_(p)
|
887 |
+
return module
|
kolors/models/modeling_chatglm.py
ADDED
@@ -0,0 +1,1298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import copy
|
5 |
+
import warnings
|
6 |
+
import re
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
14 |
+
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
|
15 |
+
from torch.nn.utils import skip_init
|
16 |
+
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
17 |
+
from copy import deepcopy
|
18 |
+
|
19 |
+
from transformers.modeling_outputs import (
|
20 |
+
BaseModelOutputWithPast,
|
21 |
+
CausalLMOutputWithPast,
|
22 |
+
SequenceClassifierOutputWithPast,
|
23 |
+
)
|
24 |
+
from transformers.modeling_utils import PreTrainedModel
|
25 |
+
from transformers.utils import logging
|
26 |
+
from transformers.generation.logits_process import LogitsProcessor
|
27 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
28 |
+
|
29 |
+
try:
|
30 |
+
from .configuration_chatglm import ChatGLMConfig
|
31 |
+
except:
|
32 |
+
from configuration_chatglm import ChatGLMConfig
|
33 |
+
|
34 |
+
|
35 |
+
# flags required to enable jit fusion kernels
|
36 |
+
|
37 |
+
if sys.platform != 'darwin':
|
38 |
+
torch._C._jit_set_profiling_mode(False)
|
39 |
+
torch._C._jit_set_profiling_executor(False)
|
40 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
41 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
42 |
+
|
43 |
+
logger = logging.get_logger(__name__)
|
44 |
+
|
45 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
46 |
+
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
47 |
+
|
48 |
+
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
49 |
+
"THUDM/chatglm3-6b-base",
|
50 |
+
# See all ChatGLM models at https://huggingface.co/models?filter=chatglm
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
def default_init(cls, *args, **kwargs):
|
55 |
+
return cls(*args, **kwargs)
|
56 |
+
|
57 |
+
|
58 |
+
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
59 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
60 |
+
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
61 |
+
scores.zero_()
|
62 |
+
scores[..., 5] = 5e4
|
63 |
+
return scores
|
64 |
+
|
65 |
+
|
66 |
+
class PrefixEncoder(torch.nn.Module):
|
67 |
+
"""
|
68 |
+
The torch.nn model to encode the prefix
|
69 |
+
Input shape: (batch-size, prefix-length)
|
70 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, config: ChatGLMConfig):
|
74 |
+
super().__init__()
|
75 |
+
self.prefix_projection = config.prefix_projection
|
76 |
+
if self.prefix_projection:
|
77 |
+
# Use a two-layer MLP to encode the prefix
|
78 |
+
kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
|
79 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
|
80 |
+
self.trans = torch.nn.Sequential(
|
81 |
+
torch.nn.Linear(kv_size, config.hidden_size),
|
82 |
+
torch.nn.Tanh(),
|
83 |
+
torch.nn.Linear(config.hidden_size, kv_size)
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len,
|
87 |
+
config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
|
88 |
+
|
89 |
+
def forward(self, prefix: torch.Tensor):
|
90 |
+
if self.prefix_projection:
|
91 |
+
prefix_tokens = self.embedding(prefix)
|
92 |
+
past_key_values = self.trans(prefix_tokens)
|
93 |
+
else:
|
94 |
+
past_key_values = self.embedding(prefix)
|
95 |
+
return past_key_values
|
96 |
+
|
97 |
+
|
98 |
+
def split_tensor_along_last_dim(
|
99 |
+
tensor: torch.Tensor,
|
100 |
+
num_partitions: int,
|
101 |
+
contiguous_split_chunks: bool = False,
|
102 |
+
) -> List[torch.Tensor]:
|
103 |
+
"""Split a tensor along its last dimension.
|
104 |
+
|
105 |
+
Arguments:
|
106 |
+
tensor: input tensor.
|
107 |
+
num_partitions: number of partitions to split the tensor
|
108 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
109 |
+
in memory.
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
A list of Tensors
|
113 |
+
"""
|
114 |
+
# Get the size and dimension.
|
115 |
+
last_dim = tensor.dim() - 1
|
116 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
117 |
+
# Split.
|
118 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
119 |
+
# Note: torch.split does not create contiguous tensors by default.
|
120 |
+
if contiguous_split_chunks:
|
121 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
122 |
+
|
123 |
+
return tensor_list
|
124 |
+
|
125 |
+
|
126 |
+
class RotaryEmbedding(nn.Module):
|
127 |
+
def __init__(self, dim, original_impl=False, device=None, dtype=None):
|
128 |
+
super().__init__()
|
129 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
|
130 |
+
self.register_buffer("inv_freq", inv_freq)
|
131 |
+
self.dim = dim
|
132 |
+
self.original_impl = original_impl
|
133 |
+
|
134 |
+
def forward_impl(
|
135 |
+
self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
|
136 |
+
):
|
137 |
+
"""Enhanced Transformer with Rotary Position Embedding.
|
138 |
+
|
139 |
+
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
|
140 |
+
transformers/rope/__init__.py. MIT License:
|
141 |
+
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
|
142 |
+
"""
|
143 |
+
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
|
144 |
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
|
145 |
+
|
146 |
+
# Create position indexes `[0, 1, ..., seq_len - 1]`
|
147 |
+
seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
|
148 |
+
|
149 |
+
# Calculate the product of position index and $\theta_i$
|
150 |
+
idx_theta = torch.outer(seq_idx, theta).float()
|
151 |
+
|
152 |
+
cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
|
153 |
+
|
154 |
+
# this is to mimic the behaviour of complex32, else we will get different results
|
155 |
+
if dtype in (torch.float16, torch.bfloat16, torch.int8):
|
156 |
+
cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
|
157 |
+
return cache
|
158 |
+
|
159 |
+
def forward(self, max_seq_len, offset=0):
|
160 |
+
return self.forward_impl(
|
161 |
+
max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
@torch.jit.script
|
166 |
+
def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
|
167 |
+
# x: [sq, b, np, hn]
|
168 |
+
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
|
169 |
+
rot_dim = rope_cache.shape[-2] * 2
|
170 |
+
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
|
171 |
+
# truncate to support variable sizes
|
172 |
+
rope_cache = rope_cache[:sq]
|
173 |
+
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
|
174 |
+
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
|
175 |
+
x_out2 = torch.stack(
|
176 |
+
[
|
177 |
+
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
|
178 |
+
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
|
179 |
+
],
|
180 |
+
-1,
|
181 |
+
)
|
182 |
+
x_out2 = x_out2.flatten(3)
|
183 |
+
return torch.cat((x_out2, x_pass), dim=-1)
|
184 |
+
|
185 |
+
|
186 |
+
class RMSNorm(torch.nn.Module):
|
187 |
+
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
|
188 |
+
super().__init__()
|
189 |
+
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
|
190 |
+
self.eps = eps
|
191 |
+
|
192 |
+
def forward(self, hidden_states: torch.Tensor):
|
193 |
+
input_dtype = hidden_states.dtype
|
194 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
195 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
196 |
+
|
197 |
+
return (self.weight * hidden_states).to(input_dtype)
|
198 |
+
|
199 |
+
|
200 |
+
class CoreAttention(torch.nn.Module):
|
201 |
+
def __init__(self, config: ChatGLMConfig, layer_number):
|
202 |
+
super(CoreAttention, self).__init__()
|
203 |
+
|
204 |
+
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
|
205 |
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
206 |
+
if self.apply_query_key_layer_scaling:
|
207 |
+
self.attention_softmax_in_fp32 = True
|
208 |
+
self.layer_number = max(1, layer_number)
|
209 |
+
|
210 |
+
projection_size = config.kv_channels * config.num_attention_heads
|
211 |
+
|
212 |
+
# Per attention head and per partition values.
|
213 |
+
self.hidden_size_per_partition = projection_size
|
214 |
+
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
|
215 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
216 |
+
|
217 |
+
coeff = None
|
218 |
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
219 |
+
if self.apply_query_key_layer_scaling:
|
220 |
+
coeff = self.layer_number
|
221 |
+
self.norm_factor *= coeff
|
222 |
+
self.coeff = coeff
|
223 |
+
|
224 |
+
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
225 |
+
|
226 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
227 |
+
pytorch_major_version = int(torch.__version__.split('.')[0])
|
228 |
+
if pytorch_major_version >= 2:
|
229 |
+
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
|
230 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
231 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
232 |
+
is_causal=True)
|
233 |
+
else:
|
234 |
+
if attention_mask is not None:
|
235 |
+
attention_mask = ~attention_mask
|
236 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
237 |
+
attention_mask)
|
238 |
+
context_layer = context_layer.permute(2, 0, 1, 3)
|
239 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
240 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
241 |
+
else:
|
242 |
+
# Raw attention scores
|
243 |
+
|
244 |
+
# [b, np, sq, sk]
|
245 |
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
246 |
+
|
247 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
248 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
249 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
250 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
251 |
+
|
252 |
+
# preallocting input tensor: [b * np, sq, sk]
|
253 |
+
matmul_input_buffer = torch.empty(
|
254 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
255 |
+
device=query_layer.device
|
256 |
+
)
|
257 |
+
|
258 |
+
# Raw attention scores. [b * np, sq, sk]
|
259 |
+
matmul_result = torch.baddbmm(
|
260 |
+
matmul_input_buffer,
|
261 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
262 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
263 |
+
beta=0.0,
|
264 |
+
alpha=(1.0 / self.norm_factor),
|
265 |
+
)
|
266 |
+
|
267 |
+
# change view to [b, np, sq, sk]
|
268 |
+
attention_scores = matmul_result.view(*output_size)
|
269 |
+
|
270 |
+
# ===========================
|
271 |
+
# Attention probs and dropout
|
272 |
+
# ===========================
|
273 |
+
|
274 |
+
# attention scores and attention mask [b, np, sq, sk]
|
275 |
+
if self.attention_softmax_in_fp32:
|
276 |
+
attention_scores = attention_scores.float()
|
277 |
+
if self.coeff is not None:
|
278 |
+
attention_scores = attention_scores * self.coeff
|
279 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
280 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
281 |
+
device=attention_scores.device, dtype=torch.bool)
|
282 |
+
attention_mask.tril_()
|
283 |
+
attention_mask = ~attention_mask
|
284 |
+
if attention_mask is not None:
|
285 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
286 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
287 |
+
attention_probs = attention_probs.type_as(value_layer)
|
288 |
+
|
289 |
+
# This is actually dropping out entire tokens to attend to, which might
|
290 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
291 |
+
attention_probs = self.attention_dropout(attention_probs)
|
292 |
+
# =========================
|
293 |
+
# Context layer. [sq, b, hp]
|
294 |
+
# =========================
|
295 |
+
|
296 |
+
# value_layer -> context layer.
|
297 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
298 |
+
|
299 |
+
# context layer shape: [b, np, sq, hn]
|
300 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
301 |
+
# change view [sk, b * np, hn]
|
302 |
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
303 |
+
# change view [b * np, sq, sk]
|
304 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
305 |
+
# matmul: [b * np, sq, hn]
|
306 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
307 |
+
# change view [b, np, sq, hn]
|
308 |
+
context_layer = context_layer.view(*output_size)
|
309 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
310 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
311 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
312 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
313 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
314 |
+
|
315 |
+
return context_layer
|
316 |
+
|
317 |
+
|
318 |
+
class SelfAttention(torch.nn.Module):
|
319 |
+
"""Parallel self-attention layer abstract class.
|
320 |
+
|
321 |
+
Self-attention layer takes input with size [s, b, h]
|
322 |
+
and returns output of the same size.
|
323 |
+
"""
|
324 |
+
|
325 |
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
326 |
+
super(SelfAttention, self).__init__()
|
327 |
+
self.layer_number = max(1, layer_number)
|
328 |
+
|
329 |
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
330 |
+
|
331 |
+
# Per attention head and per partition values.
|
332 |
+
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
|
333 |
+
self.num_attention_heads_per_partition = config.num_attention_heads
|
334 |
+
|
335 |
+
self.multi_query_attention = config.multi_query_attention
|
336 |
+
self.qkv_hidden_size = 3 * self.projection_size
|
337 |
+
if self.multi_query_attention:
|
338 |
+
self.num_multi_query_groups_per_partition = config.multi_query_group_num
|
339 |
+
self.qkv_hidden_size = (
|
340 |
+
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
|
341 |
+
)
|
342 |
+
self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
|
343 |
+
bias=config.add_bias_linear or config.add_qkv_bias,
|
344 |
+
device=device, **_config_to_kwargs(config)
|
345 |
+
)
|
346 |
+
|
347 |
+
self.core_attention = CoreAttention(config, self.layer_number)
|
348 |
+
|
349 |
+
# Output.
|
350 |
+
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
351 |
+
device=device, **_config_to_kwargs(config)
|
352 |
+
)
|
353 |
+
|
354 |
+
def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
|
355 |
+
if self.multi_query_attention:
|
356 |
+
num_attention_heads = self.num_multi_query_groups_per_partition
|
357 |
+
else:
|
358 |
+
num_attention_heads = self.num_attention_heads_per_partition
|
359 |
+
return torch.empty(
|
360 |
+
inference_max_sequence_len,
|
361 |
+
batch_size,
|
362 |
+
num_attention_heads,
|
363 |
+
self.hidden_size_per_attention_head,
|
364 |
+
dtype=dtype,
|
365 |
+
device=device,
|
366 |
+
)
|
367 |
+
|
368 |
+
def forward(
|
369 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
|
370 |
+
):
|
371 |
+
# hidden_states: [sq, b, h]
|
372 |
+
|
373 |
+
# =================================================
|
374 |
+
# Pre-allocate memory for key-values for inference.
|
375 |
+
# =================================================
|
376 |
+
# =====================
|
377 |
+
# Query, Key, and Value
|
378 |
+
# =====================
|
379 |
+
|
380 |
+
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
|
381 |
+
mixed_x_layer = self.query_key_value(hidden_states)
|
382 |
+
|
383 |
+
if self.multi_query_attention:
|
384 |
+
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
|
385 |
+
[
|
386 |
+
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
|
387 |
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
388 |
+
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
|
389 |
+
],
|
390 |
+
dim=-1,
|
391 |
+
)
|
392 |
+
query_layer = query_layer.view(
|
393 |
+
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
394 |
+
)
|
395 |
+
key_layer = key_layer.view(
|
396 |
+
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
397 |
+
)
|
398 |
+
value_layer = value_layer.view(
|
399 |
+
value_layer.size()[:-1]
|
400 |
+
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
|
401 |
+
)
|
402 |
+
else:
|
403 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
404 |
+
(self.num_attention_heads_per_partition,
|
405 |
+
3 * self.hidden_size_per_attention_head)
|
406 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
407 |
+
|
408 |
+
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
409 |
+
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
|
410 |
+
|
411 |
+
# apply relative positional encoding (rotary embedding)
|
412 |
+
if rotary_pos_emb is not None:
|
413 |
+
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
|
414 |
+
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
|
415 |
+
|
416 |
+
# adjust key and value for inference
|
417 |
+
if kv_cache is not None:
|
418 |
+
cache_k, cache_v = kv_cache
|
419 |
+
key_layer = torch.cat((cache_k, key_layer), dim=0)
|
420 |
+
value_layer = torch.cat((cache_v, value_layer), dim=0)
|
421 |
+
if use_cache:
|
422 |
+
kv_cache = (key_layer, value_layer)
|
423 |
+
else:
|
424 |
+
kv_cache = None
|
425 |
+
|
426 |
+
if self.multi_query_attention:
|
427 |
+
key_layer = key_layer.unsqueeze(-2)
|
428 |
+
key_layer = key_layer.expand(
|
429 |
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
430 |
+
)
|
431 |
+
key_layer = key_layer.contiguous().view(
|
432 |
+
key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
433 |
+
)
|
434 |
+
value_layer = value_layer.unsqueeze(-2)
|
435 |
+
value_layer = value_layer.expand(
|
436 |
+
-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
|
437 |
+
)
|
438 |
+
value_layer = value_layer.contiguous().view(
|
439 |
+
value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
|
440 |
+
)
|
441 |
+
|
442 |
+
# ==================================
|
443 |
+
# core attention computation
|
444 |
+
# ==================================
|
445 |
+
|
446 |
+
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
|
447 |
+
|
448 |
+
# =================
|
449 |
+
# Output. [sq, b, h]
|
450 |
+
# =================
|
451 |
+
|
452 |
+
output = self.dense(context_layer)
|
453 |
+
|
454 |
+
return output, kv_cache
|
455 |
+
|
456 |
+
|
457 |
+
def _config_to_kwargs(args):
|
458 |
+
common_kwargs = {
|
459 |
+
"dtype": args.torch_dtype,
|
460 |
+
}
|
461 |
+
return common_kwargs
|
462 |
+
|
463 |
+
|
464 |
+
class MLP(torch.nn.Module):
|
465 |
+
"""MLP.
|
466 |
+
|
467 |
+
MLP will take the input with h hidden state, project it to 4*h
|
468 |
+
hidden dimension, perform nonlinear transformation, and project the
|
469 |
+
state back into h hidden dimension.
|
470 |
+
"""
|
471 |
+
|
472 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
473 |
+
super(MLP, self).__init__()
|
474 |
+
|
475 |
+
self.add_bias = config.add_bias_linear
|
476 |
+
|
477 |
+
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
|
478 |
+
self.dense_h_to_4h = nn.Linear(
|
479 |
+
config.hidden_size,
|
480 |
+
config.ffn_hidden_size * 2,
|
481 |
+
bias=self.add_bias,
|
482 |
+
device=device,
|
483 |
+
**_config_to_kwargs(config)
|
484 |
+
)
|
485 |
+
|
486 |
+
def swiglu(x):
|
487 |
+
x = torch.chunk(x, 2, dim=-1)
|
488 |
+
return F.silu(x[0]) * x[1]
|
489 |
+
|
490 |
+
self.activation_func = swiglu
|
491 |
+
|
492 |
+
# Project back to h.
|
493 |
+
self.dense_4h_to_h = nn.Linear(
|
494 |
+
config.ffn_hidden_size,
|
495 |
+
config.hidden_size,
|
496 |
+
bias=self.add_bias,
|
497 |
+
device=device,
|
498 |
+
**_config_to_kwargs(config)
|
499 |
+
)
|
500 |
+
|
501 |
+
def forward(self, hidden_states):
|
502 |
+
# [s, b, 4hp]
|
503 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
504 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
505 |
+
# [s, b, h]
|
506 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
507 |
+
return output
|
508 |
+
|
509 |
+
|
510 |
+
class GLMBlock(torch.nn.Module):
|
511 |
+
"""A single transformer layer.
|
512 |
+
|
513 |
+
Transformer layer takes input with size [s, b, h] and returns an
|
514 |
+
output of the same size.
|
515 |
+
"""
|
516 |
+
|
517 |
+
def __init__(self, config: ChatGLMConfig, layer_number, device=None):
|
518 |
+
super(GLMBlock, self).__init__()
|
519 |
+
self.layer_number = layer_number
|
520 |
+
|
521 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
522 |
+
|
523 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
524 |
+
|
525 |
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
526 |
+
# Layernorm on the input data.
|
527 |
+
self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
528 |
+
dtype=config.torch_dtype)
|
529 |
+
|
530 |
+
# Self attention.
|
531 |
+
self.self_attention = SelfAttention(config, layer_number, device=device)
|
532 |
+
self.hidden_dropout = config.hidden_dropout
|
533 |
+
|
534 |
+
# Layernorm on the attention output
|
535 |
+
self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
536 |
+
dtype=config.torch_dtype)
|
537 |
+
|
538 |
+
# MLP
|
539 |
+
self.mlp = MLP(config, device=device)
|
540 |
+
|
541 |
+
def forward(
|
542 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
|
543 |
+
):
|
544 |
+
# hidden_states: [s, b, h]
|
545 |
+
|
546 |
+
# Layer norm at the beginning of the transformer layer.
|
547 |
+
layernorm_output = self.input_layernorm(hidden_states)
|
548 |
+
# Self attention.
|
549 |
+
attention_output, kv_cache = self.self_attention(
|
550 |
+
layernorm_output,
|
551 |
+
attention_mask,
|
552 |
+
rotary_pos_emb,
|
553 |
+
kv_cache=kv_cache,
|
554 |
+
use_cache=use_cache
|
555 |
+
)
|
556 |
+
|
557 |
+
# Residual connection.
|
558 |
+
if self.apply_residual_connection_post_layernorm:
|
559 |
+
residual = layernorm_output
|
560 |
+
else:
|
561 |
+
residual = hidden_states
|
562 |
+
|
563 |
+
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
|
564 |
+
layernorm_input = residual + layernorm_input
|
565 |
+
|
566 |
+
# Layer norm post the self attention.
|
567 |
+
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
568 |
+
|
569 |
+
# MLP.
|
570 |
+
mlp_output = self.mlp(layernorm_output)
|
571 |
+
|
572 |
+
# Second residual connection.
|
573 |
+
if self.apply_residual_connection_post_layernorm:
|
574 |
+
residual = layernorm_output
|
575 |
+
else:
|
576 |
+
residual = layernorm_input
|
577 |
+
|
578 |
+
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
|
579 |
+
output = residual + output
|
580 |
+
|
581 |
+
return output, kv_cache
|
582 |
+
|
583 |
+
|
584 |
+
class GLMTransformer(torch.nn.Module):
|
585 |
+
"""Transformer class."""
|
586 |
+
|
587 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
588 |
+
super(GLMTransformer, self).__init__()
|
589 |
+
|
590 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
591 |
+
self.post_layer_norm = config.post_layer_norm
|
592 |
+
|
593 |
+
# Number of layers.
|
594 |
+
self.num_layers = config.num_layers
|
595 |
+
|
596 |
+
# Transformer layers.
|
597 |
+
def build_layer(layer_number):
|
598 |
+
return GLMBlock(config, layer_number, device=device)
|
599 |
+
|
600 |
+
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
|
601 |
+
|
602 |
+
if self.post_layer_norm:
|
603 |
+
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
|
604 |
+
# Final layer norm before output.
|
605 |
+
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
|
606 |
+
dtype=config.torch_dtype)
|
607 |
+
|
608 |
+
self.gradient_checkpointing = False
|
609 |
+
|
610 |
+
def _get_layer(self, layer_number):
|
611 |
+
return self.layers[layer_number]
|
612 |
+
|
613 |
+
def forward(
|
614 |
+
self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
|
615 |
+
use_cache: Optional[bool] = True,
|
616 |
+
output_hidden_states: Optional[bool] = False,
|
617 |
+
):
|
618 |
+
if not kv_caches:
|
619 |
+
kv_caches = [None for _ in range(self.num_layers)]
|
620 |
+
presents = () if use_cache else None
|
621 |
+
if self.gradient_checkpointing and self.training:
|
622 |
+
if use_cache:
|
623 |
+
logger.warning_once(
|
624 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
625 |
+
)
|
626 |
+
use_cache = False
|
627 |
+
|
628 |
+
all_self_attentions = None
|
629 |
+
all_hidden_states = () if output_hidden_states else None
|
630 |
+
for index in range(self.num_layers):
|
631 |
+
if output_hidden_states:
|
632 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
633 |
+
|
634 |
+
layer = self._get_layer(index)
|
635 |
+
if self.gradient_checkpointing and self.training:
|
636 |
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
637 |
+
layer,
|
638 |
+
hidden_states,
|
639 |
+
attention_mask,
|
640 |
+
rotary_pos_emb,
|
641 |
+
kv_caches[index],
|
642 |
+
use_cache
|
643 |
+
)
|
644 |
+
else:
|
645 |
+
layer_ret = layer(
|
646 |
+
hidden_states,
|
647 |
+
attention_mask,
|
648 |
+
rotary_pos_emb,
|
649 |
+
kv_cache=kv_caches[index],
|
650 |
+
use_cache=use_cache
|
651 |
+
)
|
652 |
+
hidden_states, kv_cache = layer_ret
|
653 |
+
if use_cache:
|
654 |
+
presents = presents + (kv_cache,)
|
655 |
+
|
656 |
+
if output_hidden_states:
|
657 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
658 |
+
|
659 |
+
# Final layer norm.
|
660 |
+
if self.post_layer_norm:
|
661 |
+
hidden_states = self.final_layernorm(hidden_states)
|
662 |
+
|
663 |
+
return hidden_states, presents, all_hidden_states, all_self_attentions
|
664 |
+
|
665 |
+
|
666 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
667 |
+
"""
|
668 |
+
An abstract class to handle weights initialization and
|
669 |
+
a simple interface for downloading and loading pretrained models.
|
670 |
+
"""
|
671 |
+
|
672 |
+
is_parallelizable = False
|
673 |
+
supports_gradient_checkpointing = True
|
674 |
+
config_class = ChatGLMConfig
|
675 |
+
base_model_prefix = "transformer"
|
676 |
+
_no_split_modules = ["GLMBlock"]
|
677 |
+
|
678 |
+
def _init_weights(self, module: nn.Module):
|
679 |
+
"""Initialize the weights."""
|
680 |
+
return
|
681 |
+
|
682 |
+
def get_masks(self, input_ids, past_key_values, padding_mask=None):
|
683 |
+
batch_size, seq_length = input_ids.shape
|
684 |
+
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
|
685 |
+
full_attention_mask.tril_()
|
686 |
+
past_length = 0
|
687 |
+
if past_key_values:
|
688 |
+
past_length = past_key_values[0][0].shape[0]
|
689 |
+
if past_length:
|
690 |
+
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
|
691 |
+
device=input_ids.device), full_attention_mask), dim=-1)
|
692 |
+
if padding_mask is not None:
|
693 |
+
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
|
694 |
+
if not past_length and padding_mask is not None:
|
695 |
+
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
|
696 |
+
full_attention_mask = (full_attention_mask < 0.5).bool()
|
697 |
+
full_attention_mask.unsqueeze_(1)
|
698 |
+
return full_attention_mask
|
699 |
+
|
700 |
+
def get_position_ids(self, input_ids, device):
|
701 |
+
batch_size, seq_length = input_ids.shape
|
702 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
703 |
+
return position_ids
|
704 |
+
|
705 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
706 |
+
if isinstance(module, GLMTransformer):
|
707 |
+
module.gradient_checkpointing = value
|
708 |
+
|
709 |
+
|
710 |
+
class Embedding(torch.nn.Module):
|
711 |
+
"""Language model embeddings."""
|
712 |
+
|
713 |
+
def __init__(self, config: ChatGLMConfig, device=None):
|
714 |
+
super(Embedding, self).__init__()
|
715 |
+
|
716 |
+
self.hidden_size = config.hidden_size
|
717 |
+
# Word embeddings (parallel).
|
718 |
+
self.word_embeddings = nn.Embedding(
|
719 |
+
config.padded_vocab_size,
|
720 |
+
self.hidden_size,
|
721 |
+
dtype=config.torch_dtype,
|
722 |
+
device=device
|
723 |
+
)
|
724 |
+
self.fp32_residual_connection = config.fp32_residual_connection
|
725 |
+
|
726 |
+
def forward(self, input_ids):
|
727 |
+
# Embeddings.
|
728 |
+
words_embeddings = self.word_embeddings(input_ids)
|
729 |
+
embeddings = words_embeddings
|
730 |
+
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
|
731 |
+
embeddings = embeddings.transpose(0, 1).contiguous()
|
732 |
+
# If the input flag for fp32 residual connection is set, convert for float.
|
733 |
+
if self.fp32_residual_connection:
|
734 |
+
embeddings = embeddings.float()
|
735 |
+
return embeddings
|
736 |
+
|
737 |
+
|
738 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
739 |
+
def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
|
740 |
+
super().__init__(config)
|
741 |
+
if empty_init:
|
742 |
+
init_method = skip_init
|
743 |
+
else:
|
744 |
+
init_method = default_init
|
745 |
+
init_kwargs = {}
|
746 |
+
if device is not None:
|
747 |
+
init_kwargs["device"] = device
|
748 |
+
self.embedding = init_method(Embedding, config, **init_kwargs)
|
749 |
+
self.num_layers = config.num_layers
|
750 |
+
self.multi_query_group_num = config.multi_query_group_num
|
751 |
+
self.kv_channels = config.kv_channels
|
752 |
+
|
753 |
+
# Rotary positional embeddings
|
754 |
+
self.seq_length = config.seq_length
|
755 |
+
rotary_dim = (
|
756 |
+
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
757 |
+
)
|
758 |
+
|
759 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
|
760 |
+
dtype=config.torch_dtype)
|
761 |
+
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
762 |
+
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
763 |
+
dtype=config.torch_dtype, **init_kwargs)
|
764 |
+
self.pre_seq_len = config.pre_seq_len
|
765 |
+
self.prefix_projection = config.prefix_projection
|
766 |
+
if self.pre_seq_len is not None:
|
767 |
+
for param in self.parameters():
|
768 |
+
param.requires_grad = False
|
769 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
770 |
+
self.prefix_encoder = PrefixEncoder(config)
|
771 |
+
self.dropout = torch.nn.Dropout(0.1)
|
772 |
+
|
773 |
+
def get_input_embeddings(self):
|
774 |
+
return self.embedding.word_embeddings
|
775 |
+
|
776 |
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
777 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
778 |
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
779 |
+
past_key_values = past_key_values.view(
|
780 |
+
batch_size,
|
781 |
+
self.pre_seq_len,
|
782 |
+
self.num_layers * 2,
|
783 |
+
self.multi_query_group_num,
|
784 |
+
self.kv_channels
|
785 |
+
)
|
786 |
+
# seq_len, b, nh, hidden_size
|
787 |
+
past_key_values = self.dropout(past_key_values)
|
788 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
789 |
+
return past_key_values
|
790 |
+
|
791 |
+
def forward(
|
792 |
+
self,
|
793 |
+
input_ids,
|
794 |
+
position_ids: Optional[torch.Tensor] = None,
|
795 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
796 |
+
full_attention_mask: Optional[torch.BoolTensor] = None,
|
797 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
798 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
799 |
+
use_cache: Optional[bool] = None,
|
800 |
+
output_hidden_states: Optional[bool] = None,
|
801 |
+
return_dict: Optional[bool] = None,
|
802 |
+
):
|
803 |
+
output_hidden_states = (
|
804 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
805 |
+
)
|
806 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
807 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
808 |
+
|
809 |
+
batch_size, seq_length = input_ids.shape
|
810 |
+
|
811 |
+
if inputs_embeds is None:
|
812 |
+
inputs_embeds = self.embedding(input_ids)
|
813 |
+
|
814 |
+
if self.pre_seq_len is not None:
|
815 |
+
if past_key_values is None:
|
816 |
+
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
|
817 |
+
dtype=inputs_embeds.dtype)
|
818 |
+
if attention_mask is not None:
|
819 |
+
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
820 |
+
attention_mask], dim=-1)
|
821 |
+
|
822 |
+
if full_attention_mask is None:
|
823 |
+
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
824 |
+
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
|
825 |
+
|
826 |
+
# Rotary positional embeddings
|
827 |
+
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
|
828 |
+
if position_ids is not None:
|
829 |
+
rotary_pos_emb = rotary_pos_emb[position_ids]
|
830 |
+
else:
|
831 |
+
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
|
832 |
+
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
|
833 |
+
|
834 |
+
# Run encoder.
|
835 |
+
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
836 |
+
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
|
837 |
+
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
|
838 |
+
)
|
839 |
+
|
840 |
+
if not return_dict:
|
841 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
842 |
+
|
843 |
+
return BaseModelOutputWithPast(
|
844 |
+
last_hidden_state=hidden_states,
|
845 |
+
past_key_values=presents,
|
846 |
+
hidden_states=all_hidden_states,
|
847 |
+
attentions=all_self_attentions,
|
848 |
+
)
|
849 |
+
|
850 |
+
def quantize(self, weight_bit_width: int):
|
851 |
+
from .quantization import quantize
|
852 |
+
quantize(self.encoder, weight_bit_width)
|
853 |
+
return self
|
854 |
+
|
855 |
+
|
856 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
857 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
858 |
+
super().__init__(config)
|
859 |
+
|
860 |
+
self.max_sequence_length = config.max_length
|
861 |
+
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
862 |
+
self.config = config
|
863 |
+
self.quantized = False
|
864 |
+
|
865 |
+
if self.config.quantization_bit:
|
866 |
+
self.quantize(self.config.quantization_bit, empty_init=True)
|
867 |
+
|
868 |
+
def _update_model_kwargs_for_generation(
|
869 |
+
self,
|
870 |
+
outputs: ModelOutput,
|
871 |
+
model_kwargs: Dict[str, Any],
|
872 |
+
is_encoder_decoder: bool = False,
|
873 |
+
standardize_cache_format: bool = False,
|
874 |
+
) -> Dict[str, Any]:
|
875 |
+
# update past_key_values
|
876 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
877 |
+
outputs, standardize_cache_format=standardize_cache_format
|
878 |
+
)
|
879 |
+
|
880 |
+
# update attention mask
|
881 |
+
if "attention_mask" in model_kwargs:
|
882 |
+
attention_mask = model_kwargs["attention_mask"]
|
883 |
+
model_kwargs["attention_mask"] = torch.cat(
|
884 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
885 |
+
)
|
886 |
+
|
887 |
+
# update position ids
|
888 |
+
if "position_ids" in model_kwargs:
|
889 |
+
position_ids = model_kwargs["position_ids"]
|
890 |
+
new_position_id = position_ids[..., -1:].clone()
|
891 |
+
new_position_id += 1
|
892 |
+
model_kwargs["position_ids"] = torch.cat(
|
893 |
+
[position_ids, new_position_id], dim=-1
|
894 |
+
)
|
895 |
+
|
896 |
+
model_kwargs["is_first_forward"] = False
|
897 |
+
return model_kwargs
|
898 |
+
|
899 |
+
def prepare_inputs_for_generation(
|
900 |
+
self,
|
901 |
+
input_ids: torch.LongTensor,
|
902 |
+
past_key_values: Optional[torch.Tensor] = None,
|
903 |
+
attention_mask: Optional[torch.Tensor] = None,
|
904 |
+
position_ids: Optional[torch.Tensor] = None,
|
905 |
+
use_cache: Optional[bool] = None,
|
906 |
+
is_first_forward: bool = True,
|
907 |
+
**kwargs
|
908 |
+
) -> dict:
|
909 |
+
# only last token for input_ids if past is not None
|
910 |
+
if position_ids is None:
|
911 |
+
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
|
912 |
+
if not is_first_forward:
|
913 |
+
if past_key_values is not None:
|
914 |
+
position_ids = position_ids[..., -1:]
|
915 |
+
input_ids = input_ids[:, -1:]
|
916 |
+
return {
|
917 |
+
"input_ids": input_ids,
|
918 |
+
"past_key_values": past_key_values,
|
919 |
+
"position_ids": position_ids,
|
920 |
+
"attention_mask": attention_mask,
|
921 |
+
"return_last_logit": True,
|
922 |
+
"use_cache": use_cache
|
923 |
+
}
|
924 |
+
|
925 |
+
def forward(
|
926 |
+
self,
|
927 |
+
input_ids: Optional[torch.Tensor] = None,
|
928 |
+
position_ids: Optional[torch.Tensor] = None,
|
929 |
+
attention_mask: Optional[torch.Tensor] = None,
|
930 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
931 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
932 |
+
labels: Optional[torch.Tensor] = None,
|
933 |
+
use_cache: Optional[bool] = None,
|
934 |
+
output_attentions: Optional[bool] = None,
|
935 |
+
output_hidden_states: Optional[bool] = None,
|
936 |
+
return_dict: Optional[bool] = None,
|
937 |
+
return_last_logit: Optional[bool] = False,
|
938 |
+
):
|
939 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
940 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
941 |
+
|
942 |
+
transformer_outputs = self.transformer(
|
943 |
+
input_ids=input_ids,
|
944 |
+
position_ids=position_ids,
|
945 |
+
attention_mask=attention_mask,
|
946 |
+
past_key_values=past_key_values,
|
947 |
+
inputs_embeds=inputs_embeds,
|
948 |
+
use_cache=use_cache,
|
949 |
+
output_hidden_states=output_hidden_states,
|
950 |
+
return_dict=return_dict,
|
951 |
+
)
|
952 |
+
|
953 |
+
hidden_states = transformer_outputs[0]
|
954 |
+
if return_last_logit:
|
955 |
+
hidden_states = hidden_states[-1:]
|
956 |
+
lm_logits = self.transformer.output_layer(hidden_states)
|
957 |
+
lm_logits = lm_logits.transpose(0, 1).contiguous()
|
958 |
+
|
959 |
+
loss = None
|
960 |
+
if labels is not None:
|
961 |
+
lm_logits = lm_logits.to(torch.float32)
|
962 |
+
|
963 |
+
# Shift so that tokens < n predict n
|
964 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
965 |
+
shift_labels = labels[..., 1:].contiguous()
|
966 |
+
# Flatten the tokens
|
967 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
968 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
969 |
+
|
970 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
971 |
+
loss = loss.to(hidden_states.dtype)
|
972 |
+
|
973 |
+
if not return_dict:
|
974 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
975 |
+
return ((loss,) + output) if loss is not None else output
|
976 |
+
|
977 |
+
return CausalLMOutputWithPast(
|
978 |
+
loss=loss,
|
979 |
+
logits=lm_logits,
|
980 |
+
past_key_values=transformer_outputs.past_key_values,
|
981 |
+
hidden_states=transformer_outputs.hidden_states,
|
982 |
+
attentions=transformer_outputs.attentions,
|
983 |
+
)
|
984 |
+
|
985 |
+
@staticmethod
|
986 |
+
def _reorder_cache(
|
987 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
988 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
989 |
+
"""
|
990 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
991 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
992 |
+
beam_idx at every generation step.
|
993 |
+
|
994 |
+
Output shares the same memory storage as `past`.
|
995 |
+
"""
|
996 |
+
return tuple(
|
997 |
+
(
|
998 |
+
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
999 |
+
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
1000 |
+
)
|
1001 |
+
for layer_past in past
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
def process_response(self, output, history):
|
1005 |
+
content = ""
|
1006 |
+
history = deepcopy(history)
|
1007 |
+
for response in output.split("<|assistant|>"):
|
1008 |
+
metadata, content = response.split("\n", maxsplit=1)
|
1009 |
+
if not metadata.strip():
|
1010 |
+
content = content.strip()
|
1011 |
+
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
1012 |
+
content = content.replace("[[训练时间]]", "2023年")
|
1013 |
+
else:
|
1014 |
+
history.append({"role": "assistant", "metadata": metadata, "content": content})
|
1015 |
+
if history[0]["role"] == "system" and "tools" in history[0]:
|
1016 |
+
content = "\n".join(content.split("\n")[1:-1])
|
1017 |
+
def tool_call(**kwargs):
|
1018 |
+
return kwargs
|
1019 |
+
parameters = eval(content)
|
1020 |
+
content = {"name": metadata.strip(), "parameters": parameters}
|
1021 |
+
else:
|
1022 |
+
content = {"name": metadata.strip(), "content": content}
|
1023 |
+
return content, history
|
1024 |
+
|
1025 |
+
@torch.inference_mode()
|
1026 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user",
|
1027 |
+
max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
|
1028 |
+
**kwargs):
|
1029 |
+
if history is None:
|
1030 |
+
history = []
|
1031 |
+
if logits_processor is None:
|
1032 |
+
logits_processor = LogitsProcessorList()
|
1033 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1034 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1035 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1036 |
+
inputs = tokenizer.build_chat_input(query, history=history, role=role)
|
1037 |
+
inputs = inputs.to(self.device)
|
1038 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
|
1039 |
+
tokenizer.get_command("<|observation|>")]
|
1040 |
+
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
|
1041 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1042 |
+
response = tokenizer.decode(outputs)
|
1043 |
+
history.append({"role": role, "content": query})
|
1044 |
+
response, history = self.process_response(response, history)
|
1045 |
+
return response, history
|
1046 |
+
|
1047 |
+
@torch.inference_mode()
|
1048 |
+
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user",
|
1049 |
+
past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
|
1050 |
+
logits_processor=None, return_past_key_values=False, **kwargs):
|
1051 |
+
if history is None:
|
1052 |
+
history = []
|
1053 |
+
if logits_processor is None:
|
1054 |
+
logits_processor = LogitsProcessorList()
|
1055 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1056 |
+
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
|
1057 |
+
tokenizer.get_command("<|observation|>")]
|
1058 |
+
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1059 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1060 |
+
if past_key_values is None:
|
1061 |
+
inputs = tokenizer.build_chat_input(query, history=history, role=role)
|
1062 |
+
else:
|
1063 |
+
inputs = tokenizer.build_chat_input(query, role=role)
|
1064 |
+
inputs = inputs.to(self.device)
|
1065 |
+
if past_key_values is not None:
|
1066 |
+
past_length = past_key_values[0][0].shape[0]
|
1067 |
+
if self.transformer.pre_seq_len is not None:
|
1068 |
+
past_length -= self.transformer.pre_seq_len
|
1069 |
+
inputs.position_ids += past_length
|
1070 |
+
attention_mask = inputs.attention_mask
|
1071 |
+
attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
|
1072 |
+
inputs['attention_mask'] = attention_mask
|
1073 |
+
history.append({"role": role, "content": query})
|
1074 |
+
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
|
1075 |
+
eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
|
1076 |
+
**gen_kwargs):
|
1077 |
+
if return_past_key_values:
|
1078 |
+
outputs, past_key_values = outputs
|
1079 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1080 |
+
response = tokenizer.decode(outputs)
|
1081 |
+
if response and response[-1] != "�":
|
1082 |
+
response, new_history = self.process_response(response, history)
|
1083 |
+
if return_past_key_values:
|
1084 |
+
yield response, new_history, past_key_values
|
1085 |
+
else:
|
1086 |
+
yield response, new_history
|
1087 |
+
|
1088 |
+
@torch.inference_mode()
|
1089 |
+
def stream_generate(
|
1090 |
+
self,
|
1091 |
+
input_ids,
|
1092 |
+
generation_config: Optional[GenerationConfig] = None,
|
1093 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1094 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1095 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1096 |
+
return_past_key_values=False,
|
1097 |
+
**kwargs,
|
1098 |
+
):
|
1099 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1100 |
+
|
1101 |
+
if generation_config is None:
|
1102 |
+
generation_config = self.generation_config
|
1103 |
+
generation_config = copy.deepcopy(generation_config)
|
1104 |
+
model_kwargs = generation_config.update(**kwargs)
|
1105 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
1106 |
+
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1107 |
+
|
1108 |
+
if isinstance(eos_token_id, int):
|
1109 |
+
eos_token_id = [eos_token_id]
|
1110 |
+
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
1111 |
+
|
1112 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1113 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
1114 |
+
warnings.warn(
|
1115 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1116 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1117 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1118 |
+
UserWarning,
|
1119 |
+
)
|
1120 |
+
elif generation_config.max_new_tokens is not None:
|
1121 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1122 |
+
if not has_default_max_length:
|
1123 |
+
logger.warn(
|
1124 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1125 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1126 |
+
"Please refer to the documentation for more information. "
|
1127 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1128 |
+
UserWarning,
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
if input_ids_seq_length >= generation_config.max_length:
|
1132 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1133 |
+
logger.warning(
|
1134 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1135 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1136 |
+
" increasing `max_new_tokens`."
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
# 2. Set generation parameters if not already defined
|
1140 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1141 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1142 |
+
|
1143 |
+
logits_processor = self._get_logits_processor(
|
1144 |
+
generation_config=generation_config,
|
1145 |
+
input_ids_seq_length=input_ids_seq_length,
|
1146 |
+
encoder_input_ids=input_ids,
|
1147 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1148 |
+
logits_processor=logits_processor,
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
stopping_criteria = self._get_stopping_criteria(
|
1152 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1153 |
+
)
|
1154 |
+
logits_warper = self._get_logits_warper(generation_config)
|
1155 |
+
|
1156 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1157 |
+
scores = None
|
1158 |
+
while True:
|
1159 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1160 |
+
# forward pass to get next token
|
1161 |
+
outputs = self(
|
1162 |
+
**model_inputs,
|
1163 |
+
return_dict=True,
|
1164 |
+
output_attentions=False,
|
1165 |
+
output_hidden_states=False,
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1169 |
+
|
1170 |
+
# pre-process distribution
|
1171 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1172 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1173 |
+
|
1174 |
+
# sample
|
1175 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1176 |
+
if generation_config.do_sample:
|
1177 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1178 |
+
else:
|
1179 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
1180 |
+
# update generated ids, model inputs, and length for next step
|
1181 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1182 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1183 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1184 |
+
)
|
1185 |
+
unfinished_sequences = unfinished_sequences.mul(
|
1186 |
+
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
1187 |
+
)
|
1188 |
+
if return_past_key_values:
|
1189 |
+
yield input_ids, outputs.past_key_values
|
1190 |
+
else:
|
1191 |
+
yield input_ids
|
1192 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
1193 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1194 |
+
break
|
1195 |
+
|
1196 |
+
def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
|
1197 |
+
if bits == 0:
|
1198 |
+
return
|
1199 |
+
|
1200 |
+
from .quantization import quantize
|
1201 |
+
|
1202 |
+
if self.quantized:
|
1203 |
+
logger.info("Already quantized.")
|
1204 |
+
return self
|
1205 |
+
|
1206 |
+
self.quantized = True
|
1207 |
+
|
1208 |
+
self.config.quantization_bit = bits
|
1209 |
+
|
1210 |
+
self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
|
1211 |
+
**kwargs)
|
1212 |
+
return self
|
1213 |
+
|
1214 |
+
|
1215 |
+
class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
|
1216 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
|
1217 |
+
super().__init__(config)
|
1218 |
+
|
1219 |
+
self.num_labels = config.num_labels
|
1220 |
+
self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
|
1221 |
+
|
1222 |
+
self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
|
1223 |
+
if config.classifier_dropout is not None:
|
1224 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
1225 |
+
else:
|
1226 |
+
self.dropout = None
|
1227 |
+
self.config = config
|
1228 |
+
|
1229 |
+
if self.config.quantization_bit:
|
1230 |
+
self.quantize(self.config.quantization_bit, empty_init=True)
|
1231 |
+
|
1232 |
+
def forward(
|
1233 |
+
self,
|
1234 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1235 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1236 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1237 |
+
full_attention_mask: Optional[torch.Tensor] = None,
|
1238 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
1239 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
1240 |
+
labels: Optional[torch.LongTensor] = None,
|
1241 |
+
use_cache: Optional[bool] = None,
|
1242 |
+
output_hidden_states: Optional[bool] = None,
|
1243 |
+
return_dict: Optional[bool] = None,
|
1244 |
+
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
|
1245 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1246 |
+
|
1247 |
+
transformer_outputs = self.transformer(
|
1248 |
+
input_ids=input_ids,
|
1249 |
+
position_ids=position_ids,
|
1250 |
+
attention_mask=attention_mask,
|
1251 |
+
full_attention_mask=full_attention_mask,
|
1252 |
+
past_key_values=past_key_values,
|
1253 |
+
inputs_embeds=inputs_embeds,
|
1254 |
+
use_cache=use_cache,
|
1255 |
+
output_hidden_states=output_hidden_states,
|
1256 |
+
return_dict=return_dict,
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
hidden_states = transformer_outputs[0]
|
1260 |
+
pooled_hidden_states = hidden_states[-1]
|
1261 |
+
if self.dropout is not None:
|
1262 |
+
pooled_hidden_states = self.dropout(pooled_hidden_states)
|
1263 |
+
logits = self.classifier_head(pooled_hidden_states)
|
1264 |
+
|
1265 |
+
loss = None
|
1266 |
+
if labels is not None:
|
1267 |
+
if self.config.problem_type is None:
|
1268 |
+
if self.num_labels == 1:
|
1269 |
+
self.config.problem_type = "regression"
|
1270 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1271 |
+
self.config.problem_type = "single_label_classification"
|
1272 |
+
else:
|
1273 |
+
self.config.problem_type = "multi_label_classification"
|
1274 |
+
|
1275 |
+
if self.config.problem_type == "regression":
|
1276 |
+
loss_fct = MSELoss()
|
1277 |
+
if self.num_labels == 1:
|
1278 |
+
loss = loss_fct(logits.squeeze().float(), labels.squeeze())
|
1279 |
+
else:
|
1280 |
+
loss = loss_fct(logits.float(), labels)
|
1281 |
+
elif self.config.problem_type == "single_label_classification":
|
1282 |
+
loss_fct = CrossEntropyLoss()
|
1283 |
+
loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
|
1284 |
+
elif self.config.problem_type == "multi_label_classification":
|
1285 |
+
loss_fct = BCEWithLogitsLoss()
|
1286 |
+
loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
|
1287 |
+
|
1288 |
+
if not return_dict:
|
1289 |
+
output = (logits,) + transformer_outputs[1:]
|
1290 |
+
return ((loss,) + output) if loss is not None else output
|
1291 |
+
|
1292 |
+
return SequenceClassifierOutputWithPast(
|
1293 |
+
loss=loss,
|
1294 |
+
logits=logits,
|
1295 |
+
past_key_values=transformer_outputs.past_key_values,
|
1296 |
+
hidden_states=transformer_outputs.hidden_states,
|
1297 |
+
attentions=transformer_outputs.attentions,
|
1298 |
+
)
|
kolors/models/tokenization_chatglm.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from typing import List, Optional, Union, Dict
|
5 |
+
from sentencepiece import SentencePieceProcessor
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
from transformers.utils import logging, PaddingStrategy
|
8 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
+
|
10 |
+
|
11 |
+
class SPTokenizer:
|
12 |
+
def __init__(self, model_path: str):
|
13 |
+
# reload tokenizer
|
14 |
+
assert os.path.isfile(model_path), model_path
|
15 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
16 |
+
|
17 |
+
# BOS / EOS token IDs
|
18 |
+
self.n_words: int = self.sp_model.vocab_size()
|
19 |
+
self.bos_id: int = self.sp_model.bos_id()
|
20 |
+
self.eos_id: int = self.sp_model.eos_id()
|
21 |
+
self.pad_id: int = self.sp_model.unk_id()
|
22 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
+
|
24 |
+
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
25 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
26 |
+
self.special_tokens = {}
|
27 |
+
self.index_special_tokens = {}
|
28 |
+
for token in special_tokens:
|
29 |
+
self.special_tokens[token] = self.n_words
|
30 |
+
self.index_special_tokens[self.n_words] = token
|
31 |
+
self.n_words += 1
|
32 |
+
self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
|
33 |
+
|
34 |
+
def tokenize(self, s: str, encode_special_tokens=False):
|
35 |
+
if encode_special_tokens:
|
36 |
+
last_index = 0
|
37 |
+
t = []
|
38 |
+
for match in re.finditer(self.role_special_token_expression, s):
|
39 |
+
if last_index < match.start():
|
40 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
41 |
+
t.append(s[match.start():match.end()])
|
42 |
+
last_index = match.end()
|
43 |
+
if last_index < len(s):
|
44 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
45 |
+
return t
|
46 |
+
else:
|
47 |
+
return self.sp_model.EncodeAsPieces(s)
|
48 |
+
|
49 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
50 |
+
assert type(s) is str
|
51 |
+
t = self.sp_model.encode(s)
|
52 |
+
if bos:
|
53 |
+
t = [self.bos_id] + t
|
54 |
+
if eos:
|
55 |
+
t = t + [self.eos_id]
|
56 |
+
return t
|
57 |
+
|
58 |
+
def decode(self, t: List[int]) -> str:
|
59 |
+
text, buffer = "", []
|
60 |
+
for token in t:
|
61 |
+
if token in self.index_special_tokens:
|
62 |
+
if buffer:
|
63 |
+
text += self.sp_model.decode(buffer)
|
64 |
+
buffer = []
|
65 |
+
text += self.index_special_tokens[token]
|
66 |
+
else:
|
67 |
+
buffer.append(token)
|
68 |
+
if buffer:
|
69 |
+
text += self.sp_model.decode(buffer)
|
70 |
+
return text
|
71 |
+
|
72 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
73 |
+
text = self.sp_model.DecodePieces(tokens)
|
74 |
+
return text
|
75 |
+
|
76 |
+
def convert_token_to_id(self, token):
|
77 |
+
""" Converts a token (str) in an id using the vocab. """
|
78 |
+
if token in self.special_tokens:
|
79 |
+
return self.special_tokens[token]
|
80 |
+
return self.sp_model.PieceToId(token)
|
81 |
+
|
82 |
+
def convert_id_to_token(self, index):
|
83 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
84 |
+
if index in self.index_special_tokens:
|
85 |
+
return self.index_special_tokens[index]
|
86 |
+
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
87 |
+
return ""
|
88 |
+
return self.sp_model.IdToPiece(index)
|
89 |
+
|
90 |
+
|
91 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
92 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
93 |
+
|
94 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
95 |
+
|
96 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
|
97 |
+
**kwargs):
|
98 |
+
self.name = "GLMTokenizer"
|
99 |
+
|
100 |
+
self.vocab_file = vocab_file
|
101 |
+
self.tokenizer = SPTokenizer(vocab_file)
|
102 |
+
self.special_tokens = {
|
103 |
+
"<bos>": self.tokenizer.bos_id,
|
104 |
+
"<eos>": self.tokenizer.eos_id,
|
105 |
+
"<pad>": self.tokenizer.pad_id
|
106 |
+
}
|
107 |
+
self.encode_special_tokens = encode_special_tokens
|
108 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
109 |
+
encode_special_tokens=encode_special_tokens,
|
110 |
+
**kwargs)
|
111 |
+
|
112 |
+
def get_command(self, token):
|
113 |
+
if token in self.special_tokens:
|
114 |
+
return self.special_tokens[token]
|
115 |
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
116 |
+
return self.tokenizer.special_tokens[token]
|
117 |
+
|
118 |
+
@property
|
119 |
+
def unk_token(self) -> str:
|
120 |
+
return "<unk>"
|
121 |
+
|
122 |
+
@property
|
123 |
+
def pad_token(self) -> str:
|
124 |
+
return "<unk>"
|
125 |
+
|
126 |
+
@property
|
127 |
+
def pad_token_id(self):
|
128 |
+
return self.get_command("<pad>")
|
129 |
+
|
130 |
+
@property
|
131 |
+
def eos_token(self) -> str:
|
132 |
+
return "</s>"
|
133 |
+
|
134 |
+
@property
|
135 |
+
def eos_token_id(self):
|
136 |
+
return self.get_command("<eos>")
|
137 |
+
|
138 |
+
@property
|
139 |
+
def vocab_size(self):
|
140 |
+
return self.tokenizer.n_words
|
141 |
+
|
142 |
+
def get_vocab(self):
|
143 |
+
""" Returns vocab as a dict """
|
144 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
145 |
+
vocab.update(self.added_tokens_encoder)
|
146 |
+
return vocab
|
147 |
+
|
148 |
+
def _tokenize(self, text, **kwargs):
|
149 |
+
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
150 |
+
|
151 |
+
def _convert_token_to_id(self, token):
|
152 |
+
""" Converts a token (str) in an id using the vocab. """
|
153 |
+
return self.tokenizer.convert_token_to_id(token)
|
154 |
+
|
155 |
+
def _convert_id_to_token(self, index):
|
156 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
157 |
+
return self.tokenizer.convert_id_to_token(index)
|
158 |
+
|
159 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
160 |
+
return self.tokenizer.decode_tokens(tokens)
|
161 |
+
|
162 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
163 |
+
"""
|
164 |
+
Save the vocabulary and special tokens file to a directory.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
save_directory (`str`):
|
168 |
+
The directory in which to save the vocabulary.
|
169 |
+
filename_prefix (`str`, *optional*):
|
170 |
+
An optional prefix to add to the named of the saved files.
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
if os.path.isdir(save_directory):
|
176 |
+
vocab_file = os.path.join(
|
177 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
vocab_file = save_directory
|
181 |
+
|
182 |
+
with open(self.vocab_file, 'rb') as fin:
|
183 |
+
proto_str = fin.read()
|
184 |
+
|
185 |
+
with open(vocab_file, "wb") as writer:
|
186 |
+
writer.write(proto_str)
|
187 |
+
|
188 |
+
return (vocab_file,)
|
189 |
+
|
190 |
+
def get_prefix_tokens(self):
|
191 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
192 |
+
return prefix_tokens
|
193 |
+
|
194 |
+
def build_single_message(self, role, metadata, message):
|
195 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
196 |
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
197 |
+
message_tokens = self.tokenizer.encode(message)
|
198 |
+
tokens = role_tokens + message_tokens
|
199 |
+
return tokens
|
200 |
+
|
201 |
+
def build_chat_input(self, query, history=None, role="user"):
|
202 |
+
if history is None:
|
203 |
+
history = []
|
204 |
+
input_ids = []
|
205 |
+
for item in history:
|
206 |
+
content = item["content"]
|
207 |
+
if item["role"] == "system" and "tools" in item:
|
208 |
+
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
209 |
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
210 |
+
input_ids.extend(self.build_single_message(role, "", query))
|
211 |
+
input_ids.extend([self.get_command("<|assistant|>")])
|
212 |
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
213 |
+
|
214 |
+
def build_inputs_with_special_tokens(
|
215 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
216 |
+
) -> List[int]:
|
217 |
+
"""
|
218 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
219 |
+
adding special tokens. A BERT sequence has the following format:
|
220 |
+
|
221 |
+
- single sequence: `[CLS] X [SEP]`
|
222 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
223 |
+
|
224 |
+
Args:
|
225 |
+
token_ids_0 (`List[int]`):
|
226 |
+
List of IDs to which the special tokens will be added.
|
227 |
+
token_ids_1 (`List[int]`, *optional*):
|
228 |
+
Optional second list of IDs for sequence pairs.
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
232 |
+
"""
|
233 |
+
prefix_tokens = self.get_prefix_tokens()
|
234 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
235 |
+
if token_ids_1 is not None:
|
236 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
237 |
+
return token_ids_0
|
238 |
+
|
239 |
+
def _pad(
|
240 |
+
self,
|
241 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
242 |
+
max_length: Optional[int] = None,
|
243 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
244 |
+
pad_to_multiple_of: Optional[int] = None,
|
245 |
+
return_attention_mask: Optional[bool] = None,
|
246 |
+
) -> dict:
|
247 |
+
"""
|
248 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
249 |
+
|
250 |
+
Args:
|
251 |
+
encoded_inputs:
|
252 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
253 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
254 |
+
Will truncate by taking into account the special tokens.
|
255 |
+
padding_strategy: PaddingStrategy to use for padding.
|
256 |
+
|
257 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
258 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
259 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
260 |
+
The tokenizer padding sides are defined in self.padding_side:
|
261 |
+
|
262 |
+
- 'left': pads on the left of the sequences
|
263 |
+
- 'right': pads on the right of the sequences
|
264 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
265 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
266 |
+
`>= 7.5` (Volta).
|
267 |
+
return_attention_mask:
|
268 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
269 |
+
"""
|
270 |
+
# Load from model defaults
|
271 |
+
assert self.padding_side == "left"
|
272 |
+
|
273 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
274 |
+
seq_length = len(required_input)
|
275 |
+
|
276 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
277 |
+
max_length = len(required_input)
|
278 |
+
|
279 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
280 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
281 |
+
|
282 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
283 |
+
|
284 |
+
# Initialize attention mask if not present.
|
285 |
+
if "attention_mask" not in encoded_inputs:
|
286 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
287 |
+
|
288 |
+
if "position_ids" not in encoded_inputs:
|
289 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
290 |
+
|
291 |
+
if needs_to_be_padded:
|
292 |
+
difference = max_length - len(required_input)
|
293 |
+
|
294 |
+
if "attention_mask" in encoded_inputs:
|
295 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
296 |
+
if "position_ids" in encoded_inputs:
|
297 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
298 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
299 |
+
|
300 |
+
return encoded_inputs
|
kolors/models/unet_2d_condition.py
ADDED
@@ -0,0 +1,1318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
24 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
25 |
+
from diffusers.models.activations import get_activation
|
26 |
+
from diffusers.models.attention_processor import (
|
27 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
28 |
+
CROSS_ATTENTION_PROCESSORS,
|
29 |
+
Attention,
|
30 |
+
AttentionProcessor,
|
31 |
+
AttnAddedKVProcessor,
|
32 |
+
AttnProcessor,
|
33 |
+
)
|
34 |
+
from diffusers.models.embeddings import (
|
35 |
+
GaussianFourierProjection,
|
36 |
+
GLIGENTextBoundingboxProjection,
|
37 |
+
ImageHintTimeEmbedding,
|
38 |
+
ImageProjection,
|
39 |
+
ImageTimeEmbedding,
|
40 |
+
TextImageProjection,
|
41 |
+
TextImageTimeEmbedding,
|
42 |
+
TextTimeEmbedding,
|
43 |
+
TimestepEmbedding,
|
44 |
+
Timesteps,
|
45 |
+
)
|
46 |
+
from diffusers.models.modeling_utils import ModelMixin
|
47 |
+
|
48 |
+
try:
|
49 |
+
from diffusers.models.unet_2d_blocks import (
|
50 |
+
get_down_block,
|
51 |
+
get_mid_block,
|
52 |
+
get_up_block,
|
53 |
+
)
|
54 |
+
except:
|
55 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
56 |
+
get_down_block,
|
57 |
+
get_mid_block,
|
58 |
+
get_up_block,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
64 |
+
|
65 |
+
|
66 |
+
@dataclass
|
67 |
+
class UNet2DConditionOutput(BaseOutput):
|
68 |
+
"""
|
69 |
+
The output of [`UNet2DConditionModel`].
|
70 |
+
|
71 |
+
Args:
|
72 |
+
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
73 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
74 |
+
"""
|
75 |
+
|
76 |
+
sample: torch.Tensor = None
|
77 |
+
|
78 |
+
|
79 |
+
class UNet2DConditionModel(
|
80 |
+
ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
|
81 |
+
):
|
82 |
+
r"""
|
83 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
84 |
+
shaped output.
|
85 |
+
|
86 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
87 |
+
for all models (such as downloading or saving).
|
88 |
+
|
89 |
+
Parameters:
|
90 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
91 |
+
Height and width of input/output sample.
|
92 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
93 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
94 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
95 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
96 |
+
Whether to flip the sin to cos in the time embedding.
|
97 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
98 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
99 |
+
The tuple of downsample blocks to use.
|
100 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
101 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
102 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
103 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
104 |
+
The tuple of upsample blocks to use.
|
105 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
106 |
+
Whether to include self-attention in the basic transformer blocks, see
|
107 |
+
[`~models.attention.BasicTransformerBlock`].
|
108 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
109 |
+
The tuple of output channels for each block.
|
110 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
111 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
112 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
113 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
114 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
115 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
116 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
117 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
118 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
119 |
+
The dimension of the cross attention features.
|
120 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
121 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
122 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
123 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
124 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
125 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
126 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
127 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
128 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
129 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
130 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
131 |
+
dimension to `cross_attention_dim`.
|
132 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
133 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
134 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
135 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
136 |
+
num_attention_heads (`int`, *optional*):
|
137 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
138 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
139 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
140 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
141 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
142 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
143 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
144 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
145 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
146 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
147 |
+
Dimension for the timestep embeddings.
|
148 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
149 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
150 |
+
class conditioning with `class_embed_type` equal to `None`.
|
151 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
152 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
153 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
154 |
+
An optional override for the dimension of the projected time embedding.
|
155 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
156 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
157 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
158 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
159 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
160 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
161 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
162 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
163 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
164 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
165 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
166 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
167 |
+
embeddings with the class embeddings.
|
168 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
169 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
170 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
171 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
172 |
+
otherwise.
|
173 |
+
"""
|
174 |
+
|
175 |
+
_supports_gradient_checkpointing = True
|
176 |
+
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
|
177 |
+
|
178 |
+
@register_to_config
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
sample_size: Optional[int] = None,
|
182 |
+
in_channels: int = 4,
|
183 |
+
out_channels: int = 4,
|
184 |
+
center_input_sample: bool = False,
|
185 |
+
flip_sin_to_cos: bool = True,
|
186 |
+
freq_shift: int = 0,
|
187 |
+
down_block_types: Tuple[str] = (
|
188 |
+
"CrossAttnDownBlock2D",
|
189 |
+
"CrossAttnDownBlock2D",
|
190 |
+
"CrossAttnDownBlock2D",
|
191 |
+
"DownBlock2D",
|
192 |
+
),
|
193 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
194 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
195 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
196 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
197 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
198 |
+
downsample_padding: int = 1,
|
199 |
+
mid_block_scale_factor: float = 1,
|
200 |
+
dropout: float = 0.0,
|
201 |
+
act_fn: str = "silu",
|
202 |
+
norm_num_groups: Optional[int] = 32,
|
203 |
+
norm_eps: float = 1e-5,
|
204 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
205 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
206 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
207 |
+
encoder_hid_dim: Optional[int] = None,
|
208 |
+
encoder_hid_dim_type: Optional[str] = None,
|
209 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
210 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
211 |
+
dual_cross_attention: bool = False,
|
212 |
+
use_linear_projection: bool = False,
|
213 |
+
class_embed_type: Optional[str] = None,
|
214 |
+
addition_embed_type: Optional[str] = None,
|
215 |
+
addition_time_embed_dim: Optional[int] = None,
|
216 |
+
num_class_embeds: Optional[int] = None,
|
217 |
+
upcast_attention: bool = False,
|
218 |
+
resnet_time_scale_shift: str = "default",
|
219 |
+
resnet_skip_time_act: bool = False,
|
220 |
+
resnet_out_scale_factor: float = 1.0,
|
221 |
+
time_embedding_type: str = "positional",
|
222 |
+
time_embedding_dim: Optional[int] = None,
|
223 |
+
time_embedding_act_fn: Optional[str] = None,
|
224 |
+
timestep_post_act: Optional[str] = None,
|
225 |
+
time_cond_proj_dim: Optional[int] = None,
|
226 |
+
conv_in_kernel: int = 3,
|
227 |
+
conv_out_kernel: int = 3,
|
228 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
229 |
+
attention_type: str = "default",
|
230 |
+
class_embeddings_concat: bool = False,
|
231 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
232 |
+
cross_attention_norm: Optional[str] = None,
|
233 |
+
addition_embed_type_num_heads: int = 64,
|
234 |
+
):
|
235 |
+
super().__init__()
|
236 |
+
|
237 |
+
self.sample_size = sample_size
|
238 |
+
|
239 |
+
if num_attention_heads is not None:
|
240 |
+
raise ValueError(
|
241 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
242 |
+
)
|
243 |
+
|
244 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
245 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
246 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
247 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
248 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
249 |
+
# which is why we correct for the naming here.
|
250 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
251 |
+
|
252 |
+
# Check inputs
|
253 |
+
self._check_config(
|
254 |
+
down_block_types=down_block_types,
|
255 |
+
up_block_types=up_block_types,
|
256 |
+
only_cross_attention=only_cross_attention,
|
257 |
+
block_out_channels=block_out_channels,
|
258 |
+
layers_per_block=layers_per_block,
|
259 |
+
cross_attention_dim=cross_attention_dim,
|
260 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
261 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
262 |
+
attention_head_dim=attention_head_dim,
|
263 |
+
num_attention_heads=num_attention_heads,
|
264 |
+
)
|
265 |
+
|
266 |
+
# input
|
267 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
268 |
+
self.conv_in = nn.Conv2d(
|
269 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
270 |
+
)
|
271 |
+
|
272 |
+
# time
|
273 |
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
274 |
+
time_embedding_type,
|
275 |
+
block_out_channels=block_out_channels,
|
276 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
277 |
+
freq_shift=freq_shift,
|
278 |
+
time_embedding_dim=time_embedding_dim,
|
279 |
+
)
|
280 |
+
|
281 |
+
self.time_embedding = TimestepEmbedding(
|
282 |
+
timestep_input_dim,
|
283 |
+
time_embed_dim,
|
284 |
+
act_fn=act_fn,
|
285 |
+
post_act_fn=timestep_post_act,
|
286 |
+
cond_proj_dim=time_cond_proj_dim,
|
287 |
+
)
|
288 |
+
|
289 |
+
self._set_encoder_hid_proj(
|
290 |
+
encoder_hid_dim_type,
|
291 |
+
cross_attention_dim=cross_attention_dim,
|
292 |
+
encoder_hid_dim=encoder_hid_dim,
|
293 |
+
)
|
294 |
+
|
295 |
+
# class embedding
|
296 |
+
self._set_class_embedding(
|
297 |
+
class_embed_type,
|
298 |
+
act_fn=act_fn,
|
299 |
+
num_class_embeds=num_class_embeds,
|
300 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
301 |
+
time_embed_dim=time_embed_dim,
|
302 |
+
timestep_input_dim=timestep_input_dim,
|
303 |
+
)
|
304 |
+
|
305 |
+
self._set_add_embedding(
|
306 |
+
addition_embed_type,
|
307 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
308 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
309 |
+
cross_attention_dim=cross_attention_dim,
|
310 |
+
encoder_hid_dim=encoder_hid_dim,
|
311 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
312 |
+
freq_shift=freq_shift,
|
313 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
314 |
+
time_embed_dim=time_embed_dim,
|
315 |
+
)
|
316 |
+
|
317 |
+
if time_embedding_act_fn is None:
|
318 |
+
self.time_embed_act = None
|
319 |
+
else:
|
320 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
321 |
+
|
322 |
+
self.down_blocks = nn.ModuleList([])
|
323 |
+
self.up_blocks = nn.ModuleList([])
|
324 |
+
|
325 |
+
if isinstance(only_cross_attention, bool):
|
326 |
+
if mid_block_only_cross_attention is None:
|
327 |
+
mid_block_only_cross_attention = only_cross_attention
|
328 |
+
|
329 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
330 |
+
|
331 |
+
if mid_block_only_cross_attention is None:
|
332 |
+
mid_block_only_cross_attention = False
|
333 |
+
|
334 |
+
if isinstance(num_attention_heads, int):
|
335 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
336 |
+
|
337 |
+
if isinstance(attention_head_dim, int):
|
338 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
339 |
+
|
340 |
+
if isinstance(cross_attention_dim, int):
|
341 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
342 |
+
|
343 |
+
if isinstance(layers_per_block, int):
|
344 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
345 |
+
|
346 |
+
if isinstance(transformer_layers_per_block, int):
|
347 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
348 |
+
|
349 |
+
if class_embeddings_concat:
|
350 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
351 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
352 |
+
# regular time embeddings
|
353 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
354 |
+
else:
|
355 |
+
blocks_time_embed_dim = time_embed_dim
|
356 |
+
|
357 |
+
# down
|
358 |
+
output_channel = block_out_channels[0]
|
359 |
+
for i, down_block_type in enumerate(down_block_types):
|
360 |
+
input_channel = output_channel
|
361 |
+
output_channel = block_out_channels[i]
|
362 |
+
is_final_block = i == len(block_out_channels) - 1
|
363 |
+
|
364 |
+
down_block = get_down_block(
|
365 |
+
down_block_type,
|
366 |
+
num_layers=layers_per_block[i],
|
367 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
368 |
+
in_channels=input_channel,
|
369 |
+
out_channels=output_channel,
|
370 |
+
temb_channels=blocks_time_embed_dim,
|
371 |
+
add_downsample=not is_final_block,
|
372 |
+
resnet_eps=norm_eps,
|
373 |
+
resnet_act_fn=act_fn,
|
374 |
+
resnet_groups=norm_num_groups,
|
375 |
+
cross_attention_dim=cross_attention_dim[i],
|
376 |
+
num_attention_heads=num_attention_heads[i],
|
377 |
+
downsample_padding=downsample_padding,
|
378 |
+
dual_cross_attention=dual_cross_attention,
|
379 |
+
use_linear_projection=use_linear_projection,
|
380 |
+
only_cross_attention=only_cross_attention[i],
|
381 |
+
upcast_attention=upcast_attention,
|
382 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
383 |
+
attention_type=attention_type,
|
384 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
385 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
386 |
+
cross_attention_norm=cross_attention_norm,
|
387 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
388 |
+
dropout=dropout,
|
389 |
+
)
|
390 |
+
self.down_blocks.append(down_block)
|
391 |
+
|
392 |
+
# mid
|
393 |
+
self.mid_block = get_mid_block(
|
394 |
+
mid_block_type,
|
395 |
+
temb_channels=blocks_time_embed_dim,
|
396 |
+
in_channels=block_out_channels[-1],
|
397 |
+
resnet_eps=norm_eps,
|
398 |
+
resnet_act_fn=act_fn,
|
399 |
+
resnet_groups=norm_num_groups,
|
400 |
+
output_scale_factor=mid_block_scale_factor,
|
401 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
402 |
+
num_attention_heads=num_attention_heads[-1],
|
403 |
+
cross_attention_dim=cross_attention_dim[-1],
|
404 |
+
dual_cross_attention=dual_cross_attention,
|
405 |
+
use_linear_projection=use_linear_projection,
|
406 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
407 |
+
upcast_attention=upcast_attention,
|
408 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
409 |
+
attention_type=attention_type,
|
410 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
411 |
+
cross_attention_norm=cross_attention_norm,
|
412 |
+
attention_head_dim=attention_head_dim[-1],
|
413 |
+
dropout=dropout,
|
414 |
+
)
|
415 |
+
|
416 |
+
# count how many layers upsample the images
|
417 |
+
self.num_upsamplers = 0
|
418 |
+
|
419 |
+
# up
|
420 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
421 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
422 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
423 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
424 |
+
reversed_transformer_layers_per_block = (
|
425 |
+
list(reversed(transformer_layers_per_block))
|
426 |
+
if reverse_transformer_layers_per_block is None
|
427 |
+
else reverse_transformer_layers_per_block
|
428 |
+
)
|
429 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
430 |
+
|
431 |
+
output_channel = reversed_block_out_channels[0]
|
432 |
+
for i, up_block_type in enumerate(up_block_types):
|
433 |
+
is_final_block = i == len(block_out_channels) - 1
|
434 |
+
|
435 |
+
prev_output_channel = output_channel
|
436 |
+
output_channel = reversed_block_out_channels[i]
|
437 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
438 |
+
|
439 |
+
# add upsample block for all BUT final layer
|
440 |
+
if not is_final_block:
|
441 |
+
add_upsample = True
|
442 |
+
self.num_upsamplers += 1
|
443 |
+
else:
|
444 |
+
add_upsample = False
|
445 |
+
|
446 |
+
up_block = get_up_block(
|
447 |
+
up_block_type,
|
448 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
449 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
450 |
+
in_channels=input_channel,
|
451 |
+
out_channels=output_channel,
|
452 |
+
prev_output_channel=prev_output_channel,
|
453 |
+
temb_channels=blocks_time_embed_dim,
|
454 |
+
add_upsample=add_upsample,
|
455 |
+
resnet_eps=norm_eps,
|
456 |
+
resnet_act_fn=act_fn,
|
457 |
+
resolution_idx=i,
|
458 |
+
resnet_groups=norm_num_groups,
|
459 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
460 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
461 |
+
dual_cross_attention=dual_cross_attention,
|
462 |
+
use_linear_projection=use_linear_projection,
|
463 |
+
only_cross_attention=only_cross_attention[i],
|
464 |
+
upcast_attention=upcast_attention,
|
465 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
466 |
+
attention_type=attention_type,
|
467 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
468 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
469 |
+
cross_attention_norm=cross_attention_norm,
|
470 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
471 |
+
dropout=dropout,
|
472 |
+
)
|
473 |
+
self.up_blocks.append(up_block)
|
474 |
+
prev_output_channel = output_channel
|
475 |
+
|
476 |
+
# out
|
477 |
+
if norm_num_groups is not None:
|
478 |
+
self.conv_norm_out = nn.GroupNorm(
|
479 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
480 |
+
)
|
481 |
+
|
482 |
+
self.conv_act = get_activation(act_fn)
|
483 |
+
|
484 |
+
else:
|
485 |
+
self.conv_norm_out = None
|
486 |
+
self.conv_act = None
|
487 |
+
|
488 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
489 |
+
self.conv_out = nn.Conv2d(
|
490 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
491 |
+
)
|
492 |
+
|
493 |
+
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
494 |
+
|
495 |
+
def _check_config(
|
496 |
+
self,
|
497 |
+
down_block_types: Tuple[str],
|
498 |
+
up_block_types: Tuple[str],
|
499 |
+
only_cross_attention: Union[bool, Tuple[bool]],
|
500 |
+
block_out_channels: Tuple[int],
|
501 |
+
layers_per_block: Union[int, Tuple[int]],
|
502 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
503 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
504 |
+
reverse_transformer_layers_per_block: bool,
|
505 |
+
attention_head_dim: int,
|
506 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
507 |
+
):
|
508 |
+
if len(down_block_types) != len(up_block_types):
|
509 |
+
raise ValueError(
|
510 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
511 |
+
)
|
512 |
+
|
513 |
+
if len(block_out_channels) != len(down_block_types):
|
514 |
+
raise ValueError(
|
515 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
516 |
+
)
|
517 |
+
|
518 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
519 |
+
raise ValueError(
|
520 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
521 |
+
)
|
522 |
+
|
523 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
524 |
+
raise ValueError(
|
525 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
526 |
+
)
|
527 |
+
|
528 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
529 |
+
raise ValueError(
|
530 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
531 |
+
)
|
532 |
+
|
533 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
534 |
+
raise ValueError(
|
535 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
536 |
+
)
|
537 |
+
|
538 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
539 |
+
raise ValueError(
|
540 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
541 |
+
)
|
542 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
543 |
+
for layer_number_per_block in transformer_layers_per_block:
|
544 |
+
if isinstance(layer_number_per_block, list):
|
545 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
546 |
+
|
547 |
+
def _set_time_proj(
|
548 |
+
self,
|
549 |
+
time_embedding_type: str,
|
550 |
+
block_out_channels: int,
|
551 |
+
flip_sin_to_cos: bool,
|
552 |
+
freq_shift: float,
|
553 |
+
time_embedding_dim: int,
|
554 |
+
) -> Tuple[int, int]:
|
555 |
+
if time_embedding_type == "fourier":
|
556 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
557 |
+
if time_embed_dim % 2 != 0:
|
558 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
559 |
+
self.time_proj = GaussianFourierProjection(
|
560 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
561 |
+
)
|
562 |
+
timestep_input_dim = time_embed_dim
|
563 |
+
elif time_embedding_type == "positional":
|
564 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
565 |
+
|
566 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
567 |
+
timestep_input_dim = block_out_channels[0]
|
568 |
+
else:
|
569 |
+
raise ValueError(
|
570 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
571 |
+
)
|
572 |
+
|
573 |
+
return time_embed_dim, timestep_input_dim
|
574 |
+
|
575 |
+
def _set_encoder_hid_proj(
|
576 |
+
self,
|
577 |
+
encoder_hid_dim_type: Optional[str],
|
578 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
579 |
+
encoder_hid_dim: Optional[int],
|
580 |
+
):
|
581 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
582 |
+
encoder_hid_dim_type = "text_proj"
|
583 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
584 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
585 |
+
|
586 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
587 |
+
raise ValueError(
|
588 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
589 |
+
)
|
590 |
+
|
591 |
+
if encoder_hid_dim_type == "text_proj":
|
592 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
593 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
594 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
595 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
596 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
597 |
+
self.encoder_hid_proj = TextImageProjection(
|
598 |
+
text_embed_dim=encoder_hid_dim,
|
599 |
+
image_embed_dim=cross_attention_dim,
|
600 |
+
cross_attention_dim=cross_attention_dim,
|
601 |
+
)
|
602 |
+
elif encoder_hid_dim_type == "image_proj":
|
603 |
+
# Kandinsky 2.2
|
604 |
+
self.encoder_hid_proj = ImageProjection(
|
605 |
+
image_embed_dim=encoder_hid_dim,
|
606 |
+
cross_attention_dim=cross_attention_dim,
|
607 |
+
)
|
608 |
+
elif encoder_hid_dim_type is not None:
|
609 |
+
raise ValueError(
|
610 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
611 |
+
)
|
612 |
+
else:
|
613 |
+
self.encoder_hid_proj = None
|
614 |
+
|
615 |
+
def _set_class_embedding(
|
616 |
+
self,
|
617 |
+
class_embed_type: Optional[str],
|
618 |
+
act_fn: str,
|
619 |
+
num_class_embeds: Optional[int],
|
620 |
+
projection_class_embeddings_input_dim: Optional[int],
|
621 |
+
time_embed_dim: int,
|
622 |
+
timestep_input_dim: int,
|
623 |
+
):
|
624 |
+
if class_embed_type is None and num_class_embeds is not None:
|
625 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
626 |
+
elif class_embed_type == "timestep":
|
627 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
628 |
+
elif class_embed_type == "identity":
|
629 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
630 |
+
elif class_embed_type == "projection":
|
631 |
+
if projection_class_embeddings_input_dim is None:
|
632 |
+
raise ValueError(
|
633 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
634 |
+
)
|
635 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
636 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
637 |
+
# 2. it projects from an arbitrary input dimension.
|
638 |
+
#
|
639 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
640 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
641 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
642 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
643 |
+
elif class_embed_type == "simple_projection":
|
644 |
+
if projection_class_embeddings_input_dim is None:
|
645 |
+
raise ValueError(
|
646 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
647 |
+
)
|
648 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
649 |
+
else:
|
650 |
+
self.class_embedding = None
|
651 |
+
|
652 |
+
def _set_add_embedding(
|
653 |
+
self,
|
654 |
+
addition_embed_type: str,
|
655 |
+
addition_embed_type_num_heads: int,
|
656 |
+
addition_time_embed_dim: Optional[int],
|
657 |
+
flip_sin_to_cos: bool,
|
658 |
+
freq_shift: float,
|
659 |
+
cross_attention_dim: Optional[int],
|
660 |
+
encoder_hid_dim: Optional[int],
|
661 |
+
projection_class_embeddings_input_dim: Optional[int],
|
662 |
+
time_embed_dim: int,
|
663 |
+
):
|
664 |
+
if addition_embed_type == "text":
|
665 |
+
if encoder_hid_dim is not None:
|
666 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
667 |
+
else:
|
668 |
+
text_time_embedding_from_dim = cross_attention_dim
|
669 |
+
|
670 |
+
self.add_embedding = TextTimeEmbedding(
|
671 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
672 |
+
)
|
673 |
+
elif addition_embed_type == "text_image":
|
674 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
675 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
676 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
677 |
+
self.add_embedding = TextImageTimeEmbedding(
|
678 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
679 |
+
)
|
680 |
+
elif addition_embed_type == "text_time":
|
681 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
682 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
683 |
+
elif addition_embed_type == "image":
|
684 |
+
# Kandinsky 2.2
|
685 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
686 |
+
elif addition_embed_type == "image_hint":
|
687 |
+
# Kandinsky 2.2 ControlNet
|
688 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
689 |
+
elif addition_embed_type is not None:
|
690 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
691 |
+
|
692 |
+
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
693 |
+
if attention_type in ["gated", "gated-text-image"]:
|
694 |
+
positive_len = 768
|
695 |
+
if isinstance(cross_attention_dim, int):
|
696 |
+
positive_len = cross_attention_dim
|
697 |
+
elif isinstance(cross_attention_dim, (list, tuple)):
|
698 |
+
positive_len = cross_attention_dim[0]
|
699 |
+
|
700 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
701 |
+
self.position_net = GLIGENTextBoundingboxProjection(
|
702 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
703 |
+
)
|
704 |
+
|
705 |
+
@property
|
706 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
707 |
+
r"""
|
708 |
+
Returns:
|
709 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
710 |
+
indexed by its weight name.
|
711 |
+
"""
|
712 |
+
# set recursively
|
713 |
+
processors = {}
|
714 |
+
|
715 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
716 |
+
if hasattr(module, "get_processor"):
|
717 |
+
processors[f"{name}.processor"] = module.get_processor()
|
718 |
+
|
719 |
+
for sub_name, child in module.named_children():
|
720 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
721 |
+
|
722 |
+
return processors
|
723 |
+
|
724 |
+
for name, module in self.named_children():
|
725 |
+
fn_recursive_add_processors(name, module, processors)
|
726 |
+
|
727 |
+
return processors
|
728 |
+
|
729 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
730 |
+
r"""
|
731 |
+
Sets the attention processor to use to compute attention.
|
732 |
+
|
733 |
+
Parameters:
|
734 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
735 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
736 |
+
for **all** `Attention` layers.
|
737 |
+
|
738 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
739 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
740 |
+
|
741 |
+
"""
|
742 |
+
count = len(self.attn_processors.keys())
|
743 |
+
|
744 |
+
if isinstance(processor, dict) and len(processor) != count:
|
745 |
+
raise ValueError(
|
746 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
747 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
748 |
+
)
|
749 |
+
|
750 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
751 |
+
if hasattr(module, "set_processor"):
|
752 |
+
if not isinstance(processor, dict):
|
753 |
+
module.set_processor(processor)
|
754 |
+
else:
|
755 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
756 |
+
|
757 |
+
for sub_name, child in module.named_children():
|
758 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
759 |
+
|
760 |
+
for name, module in self.named_children():
|
761 |
+
fn_recursive_attn_processor(name, module, processor)
|
762 |
+
|
763 |
+
def set_default_attn_processor(self):
|
764 |
+
"""
|
765 |
+
Disables custom attention processors and sets the default attention implementation.
|
766 |
+
"""
|
767 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
768 |
+
processor = AttnAddedKVProcessor()
|
769 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
770 |
+
processor = AttnProcessor()
|
771 |
+
else:
|
772 |
+
raise ValueError(
|
773 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
774 |
+
)
|
775 |
+
|
776 |
+
self.set_attn_processor(processor)
|
777 |
+
|
778 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
779 |
+
r"""
|
780 |
+
Enable sliced attention computation.
|
781 |
+
|
782 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
783 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
784 |
+
|
785 |
+
Args:
|
786 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
787 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
788 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
789 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
790 |
+
must be a multiple of `slice_size`.
|
791 |
+
"""
|
792 |
+
sliceable_head_dims = []
|
793 |
+
|
794 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
795 |
+
if hasattr(module, "set_attention_slice"):
|
796 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
797 |
+
|
798 |
+
for child in module.children():
|
799 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
800 |
+
|
801 |
+
# retrieve number of attention layers
|
802 |
+
for module in self.children():
|
803 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
804 |
+
|
805 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
806 |
+
|
807 |
+
if slice_size == "auto":
|
808 |
+
# half the attention head size is usually a good trade-off between
|
809 |
+
# speed and memory
|
810 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
811 |
+
elif slice_size == "max":
|
812 |
+
# make smallest slice possible
|
813 |
+
slice_size = num_sliceable_layers * [1]
|
814 |
+
|
815 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
816 |
+
|
817 |
+
if len(slice_size) != len(sliceable_head_dims):
|
818 |
+
raise ValueError(
|
819 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
820 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
821 |
+
)
|
822 |
+
|
823 |
+
for i in range(len(slice_size)):
|
824 |
+
size = slice_size[i]
|
825 |
+
dim = sliceable_head_dims[i]
|
826 |
+
if size is not None and size > dim:
|
827 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
828 |
+
|
829 |
+
# Recursively walk through all the children.
|
830 |
+
# Any children which exposes the set_attention_slice method
|
831 |
+
# gets the message
|
832 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
833 |
+
if hasattr(module, "set_attention_slice"):
|
834 |
+
module.set_attention_slice(slice_size.pop())
|
835 |
+
|
836 |
+
for child in module.children():
|
837 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
838 |
+
|
839 |
+
reversed_slice_size = list(reversed(slice_size))
|
840 |
+
for module in self.children():
|
841 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
842 |
+
|
843 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
844 |
+
if hasattr(module, "gradient_checkpointing"):
|
845 |
+
module.gradient_checkpointing = value
|
846 |
+
|
847 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
848 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
849 |
+
|
850 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
851 |
+
|
852 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
853 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
854 |
+
|
855 |
+
Args:
|
856 |
+
s1 (`float`):
|
857 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
858 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
859 |
+
s2 (`float`):
|
860 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
861 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
862 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
863 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
864 |
+
"""
|
865 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
866 |
+
setattr(upsample_block, "s1", s1)
|
867 |
+
setattr(upsample_block, "s2", s2)
|
868 |
+
setattr(upsample_block, "b1", b1)
|
869 |
+
setattr(upsample_block, "b2", b2)
|
870 |
+
|
871 |
+
def disable_freeu(self):
|
872 |
+
"""Disables the FreeU mechanism."""
|
873 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
874 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
875 |
+
for k in freeu_keys:
|
876 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
877 |
+
setattr(upsample_block, k, None)
|
878 |
+
|
879 |
+
def fuse_qkv_projections(self):
|
880 |
+
"""
|
881 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
882 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
883 |
+
|
884 |
+
<Tip warning={true}>
|
885 |
+
|
886 |
+
This API is 🧪 experimental.
|
887 |
+
|
888 |
+
</Tip>
|
889 |
+
"""
|
890 |
+
self.original_attn_processors = None
|
891 |
+
|
892 |
+
for _, attn_processor in self.attn_processors.items():
|
893 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
894 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
895 |
+
|
896 |
+
self.original_attn_processors = self.attn_processors
|
897 |
+
|
898 |
+
for module in self.modules():
|
899 |
+
if isinstance(module, Attention):
|
900 |
+
module.fuse_projections(fuse=True)
|
901 |
+
|
902 |
+
def unfuse_qkv_projections(self):
|
903 |
+
"""Disables the fused QKV projection if enabled.
|
904 |
+
|
905 |
+
<Tip warning={true}>
|
906 |
+
|
907 |
+
This API is 🧪 experimental.
|
908 |
+
|
909 |
+
</Tip>
|
910 |
+
|
911 |
+
"""
|
912 |
+
if self.original_attn_processors is not None:
|
913 |
+
self.set_attn_processor(self.original_attn_processors)
|
914 |
+
|
915 |
+
def get_time_embed(
|
916 |
+
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
917 |
+
) -> Optional[torch.Tensor]:
|
918 |
+
timesteps = timestep
|
919 |
+
if not torch.is_tensor(timesteps):
|
920 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
921 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
922 |
+
is_mps = sample.device.type == "mps"
|
923 |
+
if isinstance(timestep, float):
|
924 |
+
dtype = torch.float32 if is_mps else torch.float64
|
925 |
+
else:
|
926 |
+
dtype = torch.int32 if is_mps else torch.int64
|
927 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
928 |
+
elif len(timesteps.shape) == 0:
|
929 |
+
timesteps = timesteps[None].to(sample.device)
|
930 |
+
|
931 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
932 |
+
timesteps = timesteps.expand(sample.shape[0])
|
933 |
+
|
934 |
+
t_emb = self.time_proj(timesteps)
|
935 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
936 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
937 |
+
# there might be better ways to encapsulate this.
|
938 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
939 |
+
return t_emb
|
940 |
+
|
941 |
+
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
942 |
+
class_emb = None
|
943 |
+
if self.class_embedding is not None:
|
944 |
+
if class_labels is None:
|
945 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
946 |
+
|
947 |
+
if self.config.class_embed_type == "timestep":
|
948 |
+
class_labels = self.time_proj(class_labels)
|
949 |
+
|
950 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
951 |
+
# there might be better ways to encapsulate this.
|
952 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
953 |
+
|
954 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
955 |
+
return class_emb
|
956 |
+
|
957 |
+
def get_aug_embed(
|
958 |
+
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
959 |
+
) -> Optional[torch.Tensor]:
|
960 |
+
aug_emb = None
|
961 |
+
if self.config.addition_embed_type == "text":
|
962 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
963 |
+
elif self.config.addition_embed_type == "text_image":
|
964 |
+
# Kandinsky 2.1 - style
|
965 |
+
if "image_embeds" not in added_cond_kwargs:
|
966 |
+
raise ValueError(
|
967 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
968 |
+
)
|
969 |
+
|
970 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
971 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
972 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
973 |
+
elif self.config.addition_embed_type == "text_time":
|
974 |
+
# SDXL - style
|
975 |
+
if "text_embeds" not in added_cond_kwargs:
|
976 |
+
raise ValueError(
|
977 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
978 |
+
)
|
979 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
980 |
+
if "time_ids" not in added_cond_kwargs:
|
981 |
+
raise ValueError(
|
982 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
983 |
+
)
|
984 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
985 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
986 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
987 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
988 |
+
add_embeds = add_embeds.to(emb.dtype)
|
989 |
+
aug_emb = self.add_embedding(add_embeds)
|
990 |
+
elif self.config.addition_embed_type == "image":
|
991 |
+
# Kandinsky 2.2 - style
|
992 |
+
if "image_embeds" not in added_cond_kwargs:
|
993 |
+
raise ValueError(
|
994 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
995 |
+
)
|
996 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
997 |
+
aug_emb = self.add_embedding(image_embs)
|
998 |
+
elif self.config.addition_embed_type == "image_hint":
|
999 |
+
# Kandinsky 2.2 - style
|
1000 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1001 |
+
raise ValueError(
|
1002 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1003 |
+
)
|
1004 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1005 |
+
hint = added_cond_kwargs.get("hint")
|
1006 |
+
aug_emb = self.add_embedding(image_embs, hint)
|
1007 |
+
return aug_emb
|
1008 |
+
|
1009 |
+
def process_encoder_hidden_states(
|
1010 |
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1011 |
+
) -> torch.Tensor:
|
1012 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1013 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1014 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1015 |
+
# Kandinsky 2.1 - style
|
1016 |
+
if "image_embeds" not in added_cond_kwargs:
|
1017 |
+
raise ValueError(
|
1018 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1019 |
+
)
|
1020 |
+
|
1021 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1022 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1023 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1024 |
+
# Kandinsky 2.2 - style
|
1025 |
+
if "image_embeds" not in added_cond_kwargs:
|
1026 |
+
raise ValueError(
|
1027 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1028 |
+
)
|
1029 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1030 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1031 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1032 |
+
if "image_embeds" not in added_cond_kwargs:
|
1033 |
+
raise ValueError(
|
1034 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
if hasattr(self, 'text_encoder_hid_proj') and not self.text_encoder_hid_proj is None:
|
1038 |
+
encoder_hidden_states = self.text_encoder_hid_proj( encoder_hidden_states )
|
1039 |
+
|
1040 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1041 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1042 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1043 |
+
return encoder_hidden_states
|
1044 |
+
|
1045 |
+
def forward(
|
1046 |
+
self,
|
1047 |
+
sample: torch.Tensor,
|
1048 |
+
timestep: Union[torch.Tensor, float, int],
|
1049 |
+
encoder_hidden_states: torch.Tensor,
|
1050 |
+
class_labels: Optional[torch.Tensor] = None,
|
1051 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
1052 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1053 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1054 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1055 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1056 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1057 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1058 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1059 |
+
return_dict: bool = True,
|
1060 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
1061 |
+
r"""
|
1062 |
+
The [`UNet2DConditionModel`] forward method.
|
1063 |
+
|
1064 |
+
Args:
|
1065 |
+
sample (`torch.Tensor`):
|
1066 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1067 |
+
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1068 |
+
encoder_hidden_states (`torch.Tensor`):
|
1069 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1070 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1071 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1072 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1073 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1074 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1075 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1076 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1077 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1078 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1079 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1080 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1081 |
+
`self.processor` in
|
1082 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1083 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1084 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1085 |
+
are passed along to the UNet blocks.
|
1086 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1087 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1088 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1089 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
1090 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1091 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1092 |
+
encoder_attention_mask (`torch.Tensor`):
|
1093 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1094 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1095 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1096 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1097 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1098 |
+
tuple.
|
1099 |
+
|
1100 |
+
Returns:
|
1101 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1102 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
|
1103 |
+
otherwise a `tuple` is returned where the first element is the sample tensor.
|
1104 |
+
"""
|
1105 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1106 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1107 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1108 |
+
# on the fly if necessary.
|
1109 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
1110 |
+
|
1111 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1112 |
+
forward_upsample_size = False
|
1113 |
+
upsample_size = None
|
1114 |
+
|
1115 |
+
for dim in sample.shape[-2:]:
|
1116 |
+
if dim % default_overall_up_factor != 0:
|
1117 |
+
# Forward upsample size to force interpolation output size.
|
1118 |
+
forward_upsample_size = True
|
1119 |
+
break
|
1120 |
+
|
1121 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1122 |
+
# expects mask of shape:
|
1123 |
+
# [batch, key_tokens]
|
1124 |
+
# adds singleton query_tokens dimension:
|
1125 |
+
# [batch, 1, key_tokens]
|
1126 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1127 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1128 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1129 |
+
if attention_mask is not None:
|
1130 |
+
# assume that mask is expressed as:
|
1131 |
+
# (1 = keep, 0 = discard)
|
1132 |
+
# convert mask into a bias that can be added to attention scores:
|
1133 |
+
# (keep = +0, discard = -10000.0)
|
1134 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1135 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1136 |
+
|
1137 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1138 |
+
if encoder_attention_mask is not None:
|
1139 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1140 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1141 |
+
|
1142 |
+
# 0. center input if necessary
|
1143 |
+
if self.config.center_input_sample:
|
1144 |
+
sample = 2 * sample - 1.0
|
1145 |
+
|
1146 |
+
# 1. time
|
1147 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1148 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1149 |
+
aug_emb = None
|
1150 |
+
|
1151 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1152 |
+
if class_emb is not None:
|
1153 |
+
if self.config.class_embeddings_concat:
|
1154 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1155 |
+
else:
|
1156 |
+
emb = emb + class_emb
|
1157 |
+
|
1158 |
+
aug_emb = self.get_aug_embed(
|
1159 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1160 |
+
)
|
1161 |
+
if self.config.addition_embed_type == "image_hint":
|
1162 |
+
aug_emb, hint = aug_emb
|
1163 |
+
sample = torch.cat([sample, hint], dim=1)
|
1164 |
+
|
1165 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1166 |
+
|
1167 |
+
if self.time_embed_act is not None:
|
1168 |
+
emb = self.time_embed_act(emb)
|
1169 |
+
|
1170 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
1171 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1172 |
+
)
|
1173 |
+
|
1174 |
+
# 2. pre-process
|
1175 |
+
sample = self.conv_in(sample)
|
1176 |
+
|
1177 |
+
# 2.5 GLIGEN position net
|
1178 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1179 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1180 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1181 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1182 |
+
|
1183 |
+
# 3. down
|
1184 |
+
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
1185 |
+
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
1186 |
+
if cross_attention_kwargs is not None:
|
1187 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1188 |
+
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
1189 |
+
else:
|
1190 |
+
lora_scale = 1.0
|
1191 |
+
|
1192 |
+
if USE_PEFT_BACKEND:
|
1193 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1194 |
+
scale_lora_layers(self, lora_scale)
|
1195 |
+
|
1196 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1197 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1198 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1199 |
+
# maintain backward compatibility for legacy usage, where
|
1200 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1201 |
+
# but can only use one or the other
|
1202 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1203 |
+
deprecate(
|
1204 |
+
"T2I should not use down_block_additional_residuals",
|
1205 |
+
"1.3.0",
|
1206 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1207 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1208 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1209 |
+
standard_warn=False,
|
1210 |
+
)
|
1211 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1212 |
+
is_adapter = True
|
1213 |
+
|
1214 |
+
down_block_res_samples = (sample,)
|
1215 |
+
for downsample_block in self.down_blocks:
|
1216 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1217 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1218 |
+
additional_residuals = {}
|
1219 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1220 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1221 |
+
|
1222 |
+
sample, res_samples = downsample_block(
|
1223 |
+
hidden_states=sample,
|
1224 |
+
temb=emb,
|
1225 |
+
encoder_hidden_states=encoder_hidden_states,
|
1226 |
+
attention_mask=attention_mask,
|
1227 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1228 |
+
encoder_attention_mask=encoder_attention_mask,
|
1229 |
+
**additional_residuals,
|
1230 |
+
)
|
1231 |
+
else:
|
1232 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1233 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1234 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1235 |
+
|
1236 |
+
down_block_res_samples += res_samples
|
1237 |
+
|
1238 |
+
if is_controlnet:
|
1239 |
+
new_down_block_res_samples = ()
|
1240 |
+
|
1241 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1242 |
+
down_block_res_samples, down_block_additional_residuals
|
1243 |
+
):
|
1244 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1245 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1246 |
+
|
1247 |
+
down_block_res_samples = new_down_block_res_samples
|
1248 |
+
|
1249 |
+
# 4. mid
|
1250 |
+
if self.mid_block is not None:
|
1251 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1252 |
+
sample = self.mid_block(
|
1253 |
+
sample,
|
1254 |
+
emb,
|
1255 |
+
encoder_hidden_states=encoder_hidden_states,
|
1256 |
+
attention_mask=attention_mask,
|
1257 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1258 |
+
encoder_attention_mask=encoder_attention_mask,
|
1259 |
+
)
|
1260 |
+
else:
|
1261 |
+
sample = self.mid_block(sample, emb)
|
1262 |
+
|
1263 |
+
# To support T2I-Adapter-XL
|
1264 |
+
if (
|
1265 |
+
is_adapter
|
1266 |
+
and len(down_intrablock_additional_residuals) > 0
|
1267 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1268 |
+
):
|
1269 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1270 |
+
|
1271 |
+
if is_controlnet:
|
1272 |
+
sample = sample + mid_block_additional_residual
|
1273 |
+
|
1274 |
+
# 5. up
|
1275 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1276 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1277 |
+
|
1278 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1279 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1280 |
+
|
1281 |
+
# if we have not reached the final block and need to forward the
|
1282 |
+
# upsample size, we do it here
|
1283 |
+
if not is_final_block and forward_upsample_size:
|
1284 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1285 |
+
|
1286 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1287 |
+
sample = upsample_block(
|
1288 |
+
hidden_states=sample,
|
1289 |
+
temb=emb,
|
1290 |
+
res_hidden_states_tuple=res_samples,
|
1291 |
+
encoder_hidden_states=encoder_hidden_states,
|
1292 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1293 |
+
upsample_size=upsample_size,
|
1294 |
+
attention_mask=attention_mask,
|
1295 |
+
encoder_attention_mask=encoder_attention_mask,
|
1296 |
+
)
|
1297 |
+
else:
|
1298 |
+
sample = upsample_block(
|
1299 |
+
hidden_states=sample,
|
1300 |
+
temb=emb,
|
1301 |
+
res_hidden_states_tuple=res_samples,
|
1302 |
+
upsample_size=upsample_size,
|
1303 |
+
)
|
1304 |
+
|
1305 |
+
# 6. post-process
|
1306 |
+
if self.conv_norm_out:
|
1307 |
+
sample = self.conv_norm_out(sample)
|
1308 |
+
sample = self.conv_act(sample)
|
1309 |
+
sample = self.conv_out(sample)
|
1310 |
+
|
1311 |
+
if USE_PEFT_BACKEND:
|
1312 |
+
# remove `lora_scale` from each PEFT layer
|
1313 |
+
unscale_lora_layers(self, lora_scale)
|
1314 |
+
|
1315 |
+
if not return_dict:
|
1316 |
+
return (sample,)
|
1317 |
+
|
1318 |
+
return UNet2DConditionOutput(sample=sample)
|
kolors/pipelines/__init__.py
ADDED
File without changes
|
kolors/pipelines/pipeline_controlnet_xl_kolors_img2img.py
ADDED
@@ -0,0 +1,1365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from transformers import (
|
24 |
+
CLIPImageProcessor,
|
25 |
+
CLIPTextModel,
|
26 |
+
CLIPTextModelWithProjection,
|
27 |
+
CLIPTokenizer,
|
28 |
+
CLIPVisionModelWithProjection,
|
29 |
+
)
|
30 |
+
|
31 |
+
from diffusers.utils.import_utils import is_invisible_watermark_available
|
32 |
+
|
33 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
34 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
35 |
+
from diffusers.loaders import (
|
36 |
+
FromSingleFileMixin,
|
37 |
+
IPAdapterMixin,
|
38 |
+
StableDiffusionXLLoraLoaderMixin,
|
39 |
+
TextualInversionLoaderMixin,
|
40 |
+
)
|
41 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
42 |
+
from diffusers.models.attention_processor import (
|
43 |
+
AttnProcessor2_0,
|
44 |
+
XFormersAttnProcessor,
|
45 |
+
)
|
46 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
47 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
48 |
+
from diffusers.utils import (
|
49 |
+
USE_PEFT_BACKEND,
|
50 |
+
deprecate,
|
51 |
+
logging,
|
52 |
+
replace_example_docstring,
|
53 |
+
scale_lora_layers,
|
54 |
+
unscale_lora_layers,
|
55 |
+
)
|
56 |
+
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
57 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
58 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
59 |
+
from diffusers.pipelines.controlnet import MultiControlNetModel
|
60 |
+
|
61 |
+
from ..models.controlnet import ControlNetModel
|
62 |
+
|
63 |
+
|
64 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
69 |
+
def retrieve_latents(
|
70 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
71 |
+
):
|
72 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
73 |
+
return encoder_output.latent_dist.sample(generator)
|
74 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
75 |
+
return encoder_output.latent_dist.mode()
|
76 |
+
elif hasattr(encoder_output, "latents"):
|
77 |
+
return encoder_output.latents
|
78 |
+
else:
|
79 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
80 |
+
|
81 |
+
|
82 |
+
class StableDiffusionXLControlNetImg2ImgPipeline(
|
83 |
+
DiffusionPipeline,
|
84 |
+
StableDiffusionMixin,
|
85 |
+
TextualInversionLoaderMixin,
|
86 |
+
StableDiffusionXLLoraLoaderMixin,
|
87 |
+
FromSingleFileMixin,
|
88 |
+
IPAdapterMixin,
|
89 |
+
):
|
90 |
+
r"""
|
91 |
+
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
92 |
+
|
93 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
94 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
95 |
+
|
96 |
+
The pipeline also inherits the following loading methods:
|
97 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
98 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
99 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
100 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
101 |
+
|
102 |
+
Args:
|
103 |
+
vae ([`AutoencoderKL`]):
|
104 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
105 |
+
text_encoder ([`CLIPTextModel`]):
|
106 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
107 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
108 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
109 |
+
tokenizer (`CLIPTokenizer`):
|
110 |
+
Tokenizer of class
|
111 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
112 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
113 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
114 |
+
Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
|
115 |
+
as a list, the outputs from each ControlNet are added together to create one combined additional
|
116 |
+
conditioning.
|
117 |
+
scheduler ([`SchedulerMixin`]):
|
118 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
119 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
120 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
121 |
+
Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
|
122 |
+
config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
123 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
124 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
125 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
126 |
+
add_watermarker (`bool`, *optional*):
|
127 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
128 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
129 |
+
watermarker will be used.
|
130 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
131 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
132 |
+
"""
|
133 |
+
|
134 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
135 |
+
_optional_components = [
|
136 |
+
"tokenizer",
|
137 |
+
"text_encoder",
|
138 |
+
"feature_extractor",
|
139 |
+
"image_encoder",
|
140 |
+
]
|
141 |
+
_callback_tensor_inputs = [
|
142 |
+
"latents",
|
143 |
+
"prompt_embeds",
|
144 |
+
"negative_prompt_embeds",
|
145 |
+
"add_text_embeds",
|
146 |
+
"add_time_ids",
|
147 |
+
"negative_pooled_prompt_embeds",
|
148 |
+
"add_neg_time_ids",
|
149 |
+
]
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
vae: AutoencoderKL,
|
154 |
+
text_encoder: CLIPTextModel,
|
155 |
+
tokenizer: CLIPTokenizer,
|
156 |
+
unet: UNet2DConditionModel,
|
157 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
158 |
+
scheduler: KarrasDiffusionSchedulers,
|
159 |
+
requires_aesthetics_score: bool = False,
|
160 |
+
force_zeros_for_empty_prompt: bool = True,
|
161 |
+
feature_extractor: CLIPImageProcessor = None,
|
162 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
163 |
+
):
|
164 |
+
super().__init__()
|
165 |
+
|
166 |
+
if isinstance(controlnet, (list, tuple)):
|
167 |
+
controlnet = MultiControlNetModel(controlnet)
|
168 |
+
|
169 |
+
self.register_modules(
|
170 |
+
vae=vae,
|
171 |
+
text_encoder=text_encoder,
|
172 |
+
tokenizer=tokenizer,
|
173 |
+
unet=unet,
|
174 |
+
controlnet=controlnet,
|
175 |
+
scheduler=scheduler,
|
176 |
+
feature_extractor=feature_extractor,
|
177 |
+
image_encoder=image_encoder,
|
178 |
+
)
|
179 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
180 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
181 |
+
self.control_image_processor = VaeImageProcessor(
|
182 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
183 |
+
)
|
184 |
+
|
185 |
+
self.watermark = None
|
186 |
+
|
187 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
188 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
189 |
+
|
190 |
+
|
191 |
+
def encode_prompt(
|
192 |
+
self,
|
193 |
+
prompt,
|
194 |
+
device: Optional[torch.device] = None,
|
195 |
+
num_images_per_prompt: int = 1,
|
196 |
+
do_classifier_free_guidance: bool = True,
|
197 |
+
negative_prompt=None,
|
198 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
199 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
200 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
201 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
202 |
+
lora_scale: Optional[float] = None,
|
203 |
+
):
|
204 |
+
r"""
|
205 |
+
Encodes the prompt into text encoder hidden states.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
prompt (`str` or `List[str]`, *optional*):
|
209 |
+
prompt to be encoded
|
210 |
+
device: (`torch.device`):
|
211 |
+
torch device
|
212 |
+
num_images_per_prompt (`int`):
|
213 |
+
number of images that should be generated per prompt
|
214 |
+
do_classifier_free_guidance (`bool`):
|
215 |
+
whether to use classifier free guidance or not
|
216 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
217 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
218 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
219 |
+
less than `1`).
|
220 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
221 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
222 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
223 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
224 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
225 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
226 |
+
argument.
|
227 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
228 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
229 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
230 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
231 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
232 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
233 |
+
input argument.
|
234 |
+
lora_scale (`float`, *optional*):
|
235 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
236 |
+
"""
|
237 |
+
# from IPython import embed; embed(); exit()
|
238 |
+
device = device or self._execution_device
|
239 |
+
|
240 |
+
# set lora scale so that monkey patched LoRA
|
241 |
+
# function of text encoder can correctly access it
|
242 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
243 |
+
self._lora_scale = lora_scale
|
244 |
+
|
245 |
+
if prompt is not None and isinstance(prompt, str):
|
246 |
+
batch_size = 1
|
247 |
+
elif prompt is not None and isinstance(prompt, list):
|
248 |
+
batch_size = len(prompt)
|
249 |
+
else:
|
250 |
+
batch_size = prompt_embeds.shape[0]
|
251 |
+
|
252 |
+
# Define tokenizers and text encoders
|
253 |
+
tokenizers = [self.tokenizer]
|
254 |
+
text_encoders = [self.text_encoder]
|
255 |
+
|
256 |
+
if prompt_embeds is None:
|
257 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
258 |
+
prompt_embeds_list = []
|
259 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
260 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
261 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
262 |
+
|
263 |
+
text_inputs = tokenizer(
|
264 |
+
prompt,
|
265 |
+
padding="max_length",
|
266 |
+
max_length=256,
|
267 |
+
truncation=True,
|
268 |
+
return_tensors="pt",
|
269 |
+
).to('cuda')
|
270 |
+
output = text_encoder(
|
271 |
+
input_ids=text_inputs['input_ids'] ,
|
272 |
+
attention_mask=text_inputs['attention_mask'],
|
273 |
+
position_ids=text_inputs['position_ids'],
|
274 |
+
output_hidden_states=True)
|
275 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
276 |
+
pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
277 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
278 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
279 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
280 |
+
|
281 |
+
prompt_embeds_list.append(prompt_embeds)
|
282 |
+
|
283 |
+
# prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
284 |
+
prompt_embeds = prompt_embeds_list[0]
|
285 |
+
|
286 |
+
# get unconditional embeddings for classifier free guidance
|
287 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
288 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
289 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
290 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
291 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
292 |
+
# negative_prompt = negative_prompt or ""
|
293 |
+
uncond_tokens: List[str]
|
294 |
+
if negative_prompt is None:
|
295 |
+
uncond_tokens = [""] * batch_size
|
296 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
297 |
+
raise TypeError(
|
298 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
299 |
+
f" {type(prompt)}."
|
300 |
+
)
|
301 |
+
elif isinstance(negative_prompt, str):
|
302 |
+
uncond_tokens = [negative_prompt]
|
303 |
+
elif batch_size != len(negative_prompt):
|
304 |
+
raise ValueError(
|
305 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
306 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
307 |
+
" the batch size of `prompt`."
|
308 |
+
)
|
309 |
+
else:
|
310 |
+
uncond_tokens = negative_prompt
|
311 |
+
|
312 |
+
negative_prompt_embeds_list = []
|
313 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
314 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
315 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
316 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
317 |
+
|
318 |
+
max_length = prompt_embeds.shape[1]
|
319 |
+
uncond_input = tokenizer(
|
320 |
+
uncond_tokens,
|
321 |
+
padding="max_length",
|
322 |
+
max_length=max_length,
|
323 |
+
truncation=True,
|
324 |
+
return_tensors="pt",
|
325 |
+
).to('cuda')
|
326 |
+
output = text_encoder(
|
327 |
+
input_ids=uncond_input['input_ids'] ,
|
328 |
+
attention_mask=uncond_input['attention_mask'],
|
329 |
+
position_ids=uncond_input['position_ids'],
|
330 |
+
output_hidden_states=True)
|
331 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
332 |
+
negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
333 |
+
|
334 |
+
if do_classifier_free_guidance:
|
335 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
336 |
+
seq_len = negative_prompt_embeds.shape[1]
|
337 |
+
|
338 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
339 |
+
|
340 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
341 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
342 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
343 |
+
)
|
344 |
+
|
345 |
+
# For classifier free guidance, we need to do two forward passes.
|
346 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
347 |
+
# to avoid doing two forward passes
|
348 |
+
|
349 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
350 |
+
|
351 |
+
# negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
352 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
353 |
+
|
354 |
+
bs_embed = pooled_prompt_embeds.shape[0]
|
355 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
356 |
+
bs_embed * num_images_per_prompt, -1
|
357 |
+
)
|
358 |
+
if do_classifier_free_guidance:
|
359 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
360 |
+
bs_embed * num_images_per_prompt, -1
|
361 |
+
)
|
362 |
+
|
363 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
364 |
+
|
365 |
+
|
366 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
367 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
368 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
369 |
+
|
370 |
+
if not isinstance(image, torch.Tensor):
|
371 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
372 |
+
|
373 |
+
image = image.to(device=device, dtype=dtype)
|
374 |
+
if output_hidden_states:
|
375 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
376 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
377 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
378 |
+
torch.zeros_like(image), output_hidden_states=True
|
379 |
+
).hidden_states[-2]
|
380 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
381 |
+
num_images_per_prompt, dim=0
|
382 |
+
)
|
383 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
384 |
+
else:
|
385 |
+
image_embeds = self.image_encoder(image).image_embeds
|
386 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
387 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
388 |
+
|
389 |
+
return image_embeds, uncond_image_embeds
|
390 |
+
|
391 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
392 |
+
def prepare_ip_adapter_image_embeds(
|
393 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
394 |
+
):
|
395 |
+
image_embeds = []
|
396 |
+
if do_classifier_free_guidance:
|
397 |
+
negative_image_embeds = []
|
398 |
+
if ip_adapter_image_embeds is None:
|
399 |
+
if not isinstance(ip_adapter_image, list):
|
400 |
+
ip_adapter_image = [ip_adapter_image]
|
401 |
+
|
402 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
403 |
+
raise ValueError(
|
404 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
405 |
+
)
|
406 |
+
|
407 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
408 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
409 |
+
):
|
410 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
411 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
412 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
413 |
+
)
|
414 |
+
|
415 |
+
image_embeds.append(single_image_embeds[None, :])
|
416 |
+
if do_classifier_free_guidance:
|
417 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
418 |
+
else:
|
419 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
420 |
+
if do_classifier_free_guidance:
|
421 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
422 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
423 |
+
image_embeds.append(single_image_embeds)
|
424 |
+
|
425 |
+
ip_adapter_image_embeds = []
|
426 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
427 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
428 |
+
if do_classifier_free_guidance:
|
429 |
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
430 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
431 |
+
|
432 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
433 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
434 |
+
|
435 |
+
return ip_adapter_image_embeds
|
436 |
+
|
437 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
438 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
439 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
440 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
441 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
442 |
+
# and should be between [0, 1]
|
443 |
+
|
444 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
445 |
+
extra_step_kwargs = {}
|
446 |
+
if accepts_eta:
|
447 |
+
extra_step_kwargs["eta"] = eta
|
448 |
+
|
449 |
+
# check if the scheduler accepts generator
|
450 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
451 |
+
if accepts_generator:
|
452 |
+
extra_step_kwargs["generator"] = generator
|
453 |
+
return extra_step_kwargs
|
454 |
+
|
455 |
+
def check_inputs(
|
456 |
+
self,
|
457 |
+
prompt,
|
458 |
+
image,
|
459 |
+
strength,
|
460 |
+
num_inference_steps,
|
461 |
+
callback_steps,
|
462 |
+
negative_prompt=None,
|
463 |
+
prompt_embeds=None,
|
464 |
+
negative_prompt_embeds=None,
|
465 |
+
pooled_prompt_embeds=None,
|
466 |
+
negative_pooled_prompt_embeds=None,
|
467 |
+
ip_adapter_image=None,
|
468 |
+
ip_adapter_image_embeds=None,
|
469 |
+
controlnet_conditioning_scale=1.0,
|
470 |
+
control_guidance_start=0.0,
|
471 |
+
control_guidance_end=1.0,
|
472 |
+
callback_on_step_end_tensor_inputs=None,
|
473 |
+
):
|
474 |
+
if strength < 0 or strength > 1:
|
475 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
476 |
+
if num_inference_steps is None:
|
477 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
478 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
479 |
+
raise ValueError(
|
480 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
481 |
+
f" {type(num_inference_steps)}."
|
482 |
+
)
|
483 |
+
|
484 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
485 |
+
raise ValueError(
|
486 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
487 |
+
f" {type(callback_steps)}."
|
488 |
+
)
|
489 |
+
|
490 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
491 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
492 |
+
):
|
493 |
+
raise ValueError(
|
494 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
495 |
+
)
|
496 |
+
|
497 |
+
if prompt is not None and prompt_embeds is not None:
|
498 |
+
raise ValueError(
|
499 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
500 |
+
" only forward one of the two."
|
501 |
+
)
|
502 |
+
elif prompt is None and prompt_embeds is None:
|
503 |
+
raise ValueError(
|
504 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
505 |
+
)
|
506 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
507 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
508 |
+
|
509 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
510 |
+
raise ValueError(
|
511 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
512 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
513 |
+
)
|
514 |
+
|
515 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
516 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
517 |
+
raise ValueError(
|
518 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
519 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
520 |
+
f" {negative_prompt_embeds.shape}."
|
521 |
+
)
|
522 |
+
|
523 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
524 |
+
raise ValueError(
|
525 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
526 |
+
)
|
527 |
+
|
528 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
529 |
+
raise ValueError(
|
530 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
531 |
+
)
|
532 |
+
|
533 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
534 |
+
# conditionings.
|
535 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
536 |
+
if isinstance(prompt, list):
|
537 |
+
logger.warning(
|
538 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
539 |
+
" prompts. The conditionings will be fixed across the prompts."
|
540 |
+
)
|
541 |
+
|
542 |
+
# Check `image`
|
543 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
544 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
545 |
+
)
|
546 |
+
if (
|
547 |
+
isinstance(self.controlnet, ControlNetModel)
|
548 |
+
or is_compiled
|
549 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
550 |
+
):
|
551 |
+
self.check_image(image, prompt, prompt_embeds)
|
552 |
+
elif (
|
553 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
554 |
+
or is_compiled
|
555 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
556 |
+
):
|
557 |
+
if not isinstance(image, list):
|
558 |
+
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
559 |
+
|
560 |
+
# When `image` is a nested list:
|
561 |
+
# (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
562 |
+
elif any(isinstance(i, list) for i in image):
|
563 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
564 |
+
elif len(image) != len(self.controlnet.nets):
|
565 |
+
raise ValueError(
|
566 |
+
f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
567 |
+
)
|
568 |
+
|
569 |
+
for image_ in image:
|
570 |
+
self.check_image(image_, prompt, prompt_embeds)
|
571 |
+
else:
|
572 |
+
assert False
|
573 |
+
|
574 |
+
# Check `controlnet_conditioning_scale`
|
575 |
+
if (
|
576 |
+
isinstance(self.controlnet, ControlNetModel)
|
577 |
+
or is_compiled
|
578 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
579 |
+
):
|
580 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
581 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
582 |
+
elif (
|
583 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
584 |
+
or is_compiled
|
585 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
586 |
+
):
|
587 |
+
if isinstance(controlnet_conditioning_scale, list):
|
588 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
589 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
590 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
591 |
+
self.controlnet.nets
|
592 |
+
):
|
593 |
+
raise ValueError(
|
594 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
595 |
+
" the same length as the number of controlnets"
|
596 |
+
)
|
597 |
+
else:
|
598 |
+
assert False
|
599 |
+
|
600 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
601 |
+
control_guidance_start = [control_guidance_start]
|
602 |
+
|
603 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
604 |
+
control_guidance_end = [control_guidance_end]
|
605 |
+
|
606 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
607 |
+
raise ValueError(
|
608 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
609 |
+
)
|
610 |
+
|
611 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
612 |
+
if len(control_guidance_start) != len(self.controlnet.nets):
|
613 |
+
raise ValueError(
|
614 |
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
615 |
+
)
|
616 |
+
|
617 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
618 |
+
if start >= end:
|
619 |
+
raise ValueError(
|
620 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
621 |
+
)
|
622 |
+
if start < 0.0:
|
623 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
624 |
+
if end > 1.0:
|
625 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
626 |
+
|
627 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
628 |
+
raise ValueError(
|
629 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
630 |
+
)
|
631 |
+
|
632 |
+
if ip_adapter_image_embeds is not None:
|
633 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
634 |
+
raise ValueError(
|
635 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
636 |
+
)
|
637 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
638 |
+
raise ValueError(
|
639 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
640 |
+
)
|
641 |
+
|
642 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
|
643 |
+
def check_image(self, image, prompt, prompt_embeds):
|
644 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
645 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
646 |
+
image_is_np = isinstance(image, np.ndarray)
|
647 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
648 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
649 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
650 |
+
|
651 |
+
if (
|
652 |
+
not image_is_pil
|
653 |
+
and not image_is_tensor
|
654 |
+
and not image_is_np
|
655 |
+
and not image_is_pil_list
|
656 |
+
and not image_is_tensor_list
|
657 |
+
and not image_is_np_list
|
658 |
+
):
|
659 |
+
raise TypeError(
|
660 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
661 |
+
)
|
662 |
+
|
663 |
+
if image_is_pil:
|
664 |
+
image_batch_size = 1
|
665 |
+
else:
|
666 |
+
image_batch_size = len(image)
|
667 |
+
|
668 |
+
if prompt is not None and isinstance(prompt, str):
|
669 |
+
prompt_batch_size = 1
|
670 |
+
elif prompt is not None and isinstance(prompt, list):
|
671 |
+
prompt_batch_size = len(prompt)
|
672 |
+
elif prompt_embeds is not None:
|
673 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
674 |
+
|
675 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
676 |
+
raise ValueError(
|
677 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
678 |
+
)
|
679 |
+
|
680 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
|
681 |
+
def prepare_control_image(
|
682 |
+
self,
|
683 |
+
image,
|
684 |
+
width,
|
685 |
+
height,
|
686 |
+
batch_size,
|
687 |
+
num_images_per_prompt,
|
688 |
+
device,
|
689 |
+
dtype,
|
690 |
+
do_classifier_free_guidance=False,
|
691 |
+
guess_mode=False,
|
692 |
+
):
|
693 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
694 |
+
image_batch_size = image.shape[0]
|
695 |
+
|
696 |
+
if image_batch_size == 1:
|
697 |
+
repeat_by = batch_size
|
698 |
+
else:
|
699 |
+
# image batch size is the same as prompt batch size
|
700 |
+
repeat_by = num_images_per_prompt
|
701 |
+
|
702 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
703 |
+
|
704 |
+
image = image.to(device=device, dtype=dtype)
|
705 |
+
|
706 |
+
if do_classifier_free_guidance and not guess_mode:
|
707 |
+
image = torch.cat([image] * 2)
|
708 |
+
|
709 |
+
return image
|
710 |
+
|
711 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
712 |
+
def get_timesteps(self, num_inference_steps, strength, device):
|
713 |
+
# get the original timestep using init_timestep
|
714 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
715 |
+
|
716 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
717 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
718 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
719 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
720 |
+
|
721 |
+
return timesteps, num_inference_steps - t_start
|
722 |
+
|
723 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
|
724 |
+
def prepare_latents(
|
725 |
+
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
726 |
+
):
|
727 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
728 |
+
raise ValueError(
|
729 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
730 |
+
)
|
731 |
+
|
732 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
733 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
734 |
+
torch.cuda.empty_cache()
|
735 |
+
|
736 |
+
image = image.to(device=device, dtype=dtype)
|
737 |
+
|
738 |
+
batch_size = batch_size * num_images_per_prompt
|
739 |
+
|
740 |
+
if image.shape[1] == 4:
|
741 |
+
init_latents = image
|
742 |
+
|
743 |
+
else:
|
744 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
745 |
+
if self.vae.config.force_upcast:
|
746 |
+
image = image.float()
|
747 |
+
self.vae.to(dtype=torch.float32)
|
748 |
+
|
749 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
750 |
+
raise ValueError(
|
751 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
752 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
753 |
+
)
|
754 |
+
|
755 |
+
elif isinstance(generator, list):
|
756 |
+
init_latents = [
|
757 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
758 |
+
for i in range(batch_size)
|
759 |
+
]
|
760 |
+
init_latents = torch.cat(init_latents, dim=0)
|
761 |
+
else:
|
762 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
763 |
+
|
764 |
+
if self.vae.config.force_upcast:
|
765 |
+
self.vae.to(dtype)
|
766 |
+
|
767 |
+
init_latents = init_latents.to(dtype)
|
768 |
+
|
769 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
770 |
+
|
771 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
772 |
+
# expand init_latents for batch_size
|
773 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
774 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
775 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
776 |
+
raise ValueError(
|
777 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
778 |
+
)
|
779 |
+
else:
|
780 |
+
init_latents = torch.cat([init_latents], dim=0)
|
781 |
+
|
782 |
+
if add_noise:
|
783 |
+
shape = init_latents.shape
|
784 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
785 |
+
# get latents
|
786 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
787 |
+
|
788 |
+
latents = init_latents
|
789 |
+
|
790 |
+
return latents
|
791 |
+
|
792 |
+
|
793 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
794 |
+
def prepare_latents_t2i(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
795 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
796 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
797 |
+
raise ValueError(
|
798 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
799 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
800 |
+
)
|
801 |
+
|
802 |
+
if latents is None:
|
803 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
804 |
+
else:
|
805 |
+
latents = latents.to(device)
|
806 |
+
|
807 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
808 |
+
latents = latents * self.scheduler.init_noise_sigma
|
809 |
+
return latents
|
810 |
+
|
811 |
+
|
812 |
+
|
813 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
814 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
815 |
+
|
816 |
+
passed_add_embed_dim = (
|
817 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
818 |
+
)
|
819 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
820 |
+
|
821 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
822 |
+
raise ValueError(
|
823 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
824 |
+
)
|
825 |
+
|
826 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
827 |
+
return add_time_ids
|
828 |
+
|
829 |
+
|
830 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
831 |
+
def upcast_vae(self):
|
832 |
+
dtype = self.vae.dtype
|
833 |
+
self.vae.to(dtype=torch.float32)
|
834 |
+
use_torch_2_0_or_xformers = isinstance(
|
835 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
836 |
+
(
|
837 |
+
AttnProcessor2_0,
|
838 |
+
XFormersAttnProcessor,
|
839 |
+
),
|
840 |
+
)
|
841 |
+
# if xformers or torch_2_0 is used attention block does not need
|
842 |
+
# to be in float32 which can save lots of memory
|
843 |
+
if use_torch_2_0_or_xformers:
|
844 |
+
self.vae.post_quant_conv.to(dtype)
|
845 |
+
self.vae.decoder.conv_in.to(dtype)
|
846 |
+
self.vae.decoder.mid_block.to(dtype)
|
847 |
+
|
848 |
+
@property
|
849 |
+
def guidance_scale(self):
|
850 |
+
return self._guidance_scale
|
851 |
+
|
852 |
+
@property
|
853 |
+
def clip_skip(self):
|
854 |
+
return self._clip_skip
|
855 |
+
|
856 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
857 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
858 |
+
# corresponds to doing no classifier free guidance.
|
859 |
+
@property
|
860 |
+
def do_classifier_free_guidance(self):
|
861 |
+
return self._guidance_scale > 1
|
862 |
+
|
863 |
+
@property
|
864 |
+
def cross_attention_kwargs(self):
|
865 |
+
return self._cross_attention_kwargs
|
866 |
+
|
867 |
+
@property
|
868 |
+
def num_timesteps(self):
|
869 |
+
return self._num_timesteps
|
870 |
+
|
871 |
+
@torch.no_grad()
|
872 |
+
def __call__(
|
873 |
+
self,
|
874 |
+
prompt: Union[str, List[str]] = None,
|
875 |
+
image: PipelineImageInput = None,
|
876 |
+
control_image: PipelineImageInput = None,
|
877 |
+
height: Optional[int] = None,
|
878 |
+
width: Optional[int] = None,
|
879 |
+
strength: float = 0.8,
|
880 |
+
num_inference_steps: int = 50,
|
881 |
+
guidance_scale: float = 5.0,
|
882 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
883 |
+
num_images_per_prompt: Optional[int] = 1,
|
884 |
+
eta: float = 0.0,
|
885 |
+
guess_mode: bool = False,
|
886 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
887 |
+
latents: Optional[torch.Tensor] = None,
|
888 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
889 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
890 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
891 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
892 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
893 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
894 |
+
output_type: Optional[str] = "pil",
|
895 |
+
return_dict: bool = True,
|
896 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
897 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
|
898 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
899 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
900 |
+
original_size: Tuple[int, int] = None,
|
901 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
902 |
+
target_size: Tuple[int, int] = None,
|
903 |
+
clip_skip: Optional[int] = None,
|
904 |
+
callback_on_step_end: Optional[
|
905 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
906 |
+
] = None,
|
907 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
908 |
+
**kwargs,
|
909 |
+
):
|
910 |
+
r"""
|
911 |
+
Function invoked when calling the pipeline for generation.
|
912 |
+
|
913 |
+
Args:
|
914 |
+
prompt (`str` or `List[str]`, *optional*):
|
915 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
916 |
+
instead.
|
917 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
918 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
919 |
+
The initial image will be used as the starting point for the image generation process. Can also accept
|
920 |
+
image latents as `image`, if passing latents directly, it will not be encoded again.
|
921 |
+
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
922 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
923 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
924 |
+
the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
|
925 |
+
be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
926 |
+
and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
|
927 |
+
init, images must be passed as a list such that each element of the list can be correctly batched for
|
928 |
+
input to a single controlnet.
|
929 |
+
height (`int`, *optional*, defaults to the size of control_image):
|
930 |
+
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
931 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
932 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
933 |
+
width (`int`, *optional*, defaults to the size of control_image):
|
934 |
+
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
935 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
936 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
937 |
+
strength (`float`, *optional*, defaults to 0.8):
|
938 |
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
939 |
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
940 |
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
941 |
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
942 |
+
essentially ignores `image`.
|
943 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
944 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
945 |
+
expense of slower inference.
|
946 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
947 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
948 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
949 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
950 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
951 |
+
usually at the expense of lower image quality.
|
952 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
953 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
954 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
955 |
+
less than `1`).
|
956 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
957 |
+
The number of images to generate per prompt.
|
958 |
+
eta (`float`, *optional*, defaults to 0.0):
|
959 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
960 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
961 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
962 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
963 |
+
to make generation deterministic.
|
964 |
+
latents (`torch.Tensor`, *optional*):
|
965 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
966 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
967 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
968 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
969 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
970 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
971 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
972 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
973 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
974 |
+
argument.
|
975 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
976 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
977 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
978 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
979 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
980 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
981 |
+
input argument.
|
982 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
983 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
984 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
985 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
986 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
987 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
988 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
989 |
+
The output format of the generate image. Choose between
|
990 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
991 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
992 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
993 |
+
plain tuple.
|
994 |
+
cross_attention_kwargs (`dict`, *optional*):
|
995 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
996 |
+
`self.processor` in
|
997 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
998 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
999 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
1000 |
+
to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
|
1001 |
+
corresponding scale as a list.
|
1002 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
1003 |
+
The percentage of total steps at which the controlnet starts applying.
|
1004 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
1005 |
+
The percentage of total steps at which the controlnet stops applying.
|
1006 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1007 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1008 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1009 |
+
explained in section 2.2 of
|
1010 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1011 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1012 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1013 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1014 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1015 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1016 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1017 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1018 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1019 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1020 |
+
clip_skip (`int`, *optional*):
|
1021 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1022 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1023 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1024 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1025 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1026 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1027 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1028 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1029 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1030 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1031 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1032 |
+
|
1033 |
+
Examples:
|
1034 |
+
|
1035 |
+
Returns:
|
1036 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1037 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
|
1038 |
+
containing the output images.
|
1039 |
+
"""
|
1040 |
+
|
1041 |
+
callback = kwargs.pop("callback", None)
|
1042 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1043 |
+
|
1044 |
+
if callback is not None:
|
1045 |
+
deprecate(
|
1046 |
+
"callback",
|
1047 |
+
"1.0.0",
|
1048 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1049 |
+
)
|
1050 |
+
if callback_steps is not None:
|
1051 |
+
deprecate(
|
1052 |
+
"callback_steps",
|
1053 |
+
"1.0.0",
|
1054 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1058 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1059 |
+
|
1060 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
1061 |
+
|
1062 |
+
# align format for control guidance
|
1063 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
1064 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
1065 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
1066 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
1067 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
1068 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
1069 |
+
control_guidance_start, control_guidance_end = (
|
1070 |
+
mult * [control_guidance_start],
|
1071 |
+
mult * [control_guidance_end],
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
# from IPython import embed; embed()
|
1075 |
+
# 1. Check inputs. Raise error if not correct
|
1076 |
+
self.check_inputs(
|
1077 |
+
prompt,
|
1078 |
+
control_image,
|
1079 |
+
strength,
|
1080 |
+
num_inference_steps,
|
1081 |
+
callback_steps,
|
1082 |
+
negative_prompt,
|
1083 |
+
prompt_embeds,
|
1084 |
+
negative_prompt_embeds,
|
1085 |
+
pooled_prompt_embeds,
|
1086 |
+
negative_pooled_prompt_embeds,
|
1087 |
+
ip_adapter_image,
|
1088 |
+
ip_adapter_image_embeds,
|
1089 |
+
controlnet_conditioning_scale,
|
1090 |
+
control_guidance_start,
|
1091 |
+
control_guidance_end,
|
1092 |
+
callback_on_step_end_tensor_inputs,
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
self._guidance_scale = guidance_scale
|
1096 |
+
self._clip_skip = clip_skip
|
1097 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1098 |
+
|
1099 |
+
# 2. Define call parameters
|
1100 |
+
if prompt is not None and isinstance(prompt, str):
|
1101 |
+
batch_size = 1
|
1102 |
+
elif prompt is not None and isinstance(prompt, list):
|
1103 |
+
batch_size = len(prompt)
|
1104 |
+
else:
|
1105 |
+
batch_size = prompt_embeds.shape[0]
|
1106 |
+
|
1107 |
+
device = self._execution_device
|
1108 |
+
|
1109 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1110 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1111 |
+
|
1112 |
+
# 3.1. Encode input prompt
|
1113 |
+
text_encoder_lora_scale = (
|
1114 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1115 |
+
)
|
1116 |
+
(
|
1117 |
+
prompt_embeds,
|
1118 |
+
negative_prompt_embeds,
|
1119 |
+
pooled_prompt_embeds,
|
1120 |
+
negative_pooled_prompt_embeds,
|
1121 |
+
) = self.encode_prompt(
|
1122 |
+
prompt,
|
1123 |
+
device,
|
1124 |
+
num_images_per_prompt,
|
1125 |
+
self.do_classifier_free_guidance,
|
1126 |
+
negative_prompt,
|
1127 |
+
prompt_embeds=prompt_embeds,
|
1128 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1129 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1130 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1131 |
+
lora_scale=text_encoder_lora_scale,
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
# 3.2 Encode ip_adapter_image
|
1135 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1136 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1137 |
+
ip_adapter_image,
|
1138 |
+
ip_adapter_image_embeds,
|
1139 |
+
device,
|
1140 |
+
batch_size * num_images_per_prompt,
|
1141 |
+
self.do_classifier_free_guidance,
|
1142 |
+
)
|
1143 |
+
|
1144 |
+
# 4. Prepare image and controlnet_conditioning_image
|
1145 |
+
image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
1146 |
+
|
1147 |
+
if isinstance(controlnet, ControlNetModel):
|
1148 |
+
control_image = self.prepare_control_image(
|
1149 |
+
image=control_image,
|
1150 |
+
width=width,
|
1151 |
+
height=height,
|
1152 |
+
batch_size=batch_size * num_images_per_prompt,
|
1153 |
+
num_images_per_prompt=num_images_per_prompt,
|
1154 |
+
device=device,
|
1155 |
+
dtype=controlnet.dtype,
|
1156 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1157 |
+
guess_mode=guess_mode,
|
1158 |
+
)
|
1159 |
+
height, width = control_image.shape[-2:]
|
1160 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1161 |
+
control_images = []
|
1162 |
+
|
1163 |
+
for control_image_ in control_image:
|
1164 |
+
control_image_ = self.prepare_control_image(
|
1165 |
+
image=control_image_,
|
1166 |
+
width=width,
|
1167 |
+
height=height,
|
1168 |
+
batch_size=batch_size * num_images_per_prompt,
|
1169 |
+
num_images_per_prompt=num_images_per_prompt,
|
1170 |
+
device=device,
|
1171 |
+
dtype=controlnet.dtype,
|
1172 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1173 |
+
guess_mode=guess_mode,
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
control_images.append(control_image_)
|
1177 |
+
|
1178 |
+
control_image = control_images
|
1179 |
+
height, width = control_image[0].shape[-2:]
|
1180 |
+
else:
|
1181 |
+
assert False
|
1182 |
+
|
1183 |
+
# 5. Prepare timesteps
|
1184 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1185 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
1186 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1187 |
+
self._num_timesteps = len(timesteps)
|
1188 |
+
|
1189 |
+
# 6. Prepare latent variables
|
1190 |
+
|
1191 |
+
num_channels_latents = self.unet.config.in_channels
|
1192 |
+
if latents is None:
|
1193 |
+
if strength >= 1.0:
|
1194 |
+
latents = self.prepare_latents_t2i(
|
1195 |
+
batch_size * num_images_per_prompt,
|
1196 |
+
num_channels_latents,
|
1197 |
+
height,
|
1198 |
+
width,
|
1199 |
+
prompt_embeds.dtype,
|
1200 |
+
device,
|
1201 |
+
generator,
|
1202 |
+
latents,
|
1203 |
+
)
|
1204 |
+
else:
|
1205 |
+
latents = self.prepare_latents(
|
1206 |
+
image,
|
1207 |
+
latent_timestep,
|
1208 |
+
batch_size,
|
1209 |
+
num_images_per_prompt,
|
1210 |
+
prompt_embeds.dtype,
|
1211 |
+
device,
|
1212 |
+
generator,
|
1213 |
+
True,
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
|
1217 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1218 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1219 |
+
|
1220 |
+
# 7.1 Create tensor stating which controlnets to keep
|
1221 |
+
controlnet_keep = []
|
1222 |
+
for i in range(len(timesteps)):
|
1223 |
+
keeps = [
|
1224 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1225 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1226 |
+
]
|
1227 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1228 |
+
|
1229 |
+
# 7.2 Prepare added time ids & embeddings
|
1230 |
+
if isinstance(control_image, list):
|
1231 |
+
original_size = original_size or control_image[0].shape[-2:]
|
1232 |
+
else:
|
1233 |
+
original_size = original_size or control_image.shape[-2:]
|
1234 |
+
target_size = target_size or (height, width)
|
1235 |
+
|
1236 |
+
# 7. Prepare added time ids & embeddings
|
1237 |
+
add_text_embeds = pooled_prompt_embeds
|
1238 |
+
add_time_ids = self._get_add_time_ids(
|
1239 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
1240 |
+
)
|
1241 |
+
|
1242 |
+
if self.do_classifier_free_guidance:
|
1243 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1244 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1245 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
1246 |
+
|
1247 |
+
prompt_embeds = prompt_embeds.to(device)
|
1248 |
+
add_text_embeds = add_text_embeds.to(device)
|
1249 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1250 |
+
|
1251 |
+
# 8. Denoising loop
|
1252 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1253 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1254 |
+
for i, t in enumerate(timesteps):
|
1255 |
+
# expand the latents if we are doing classifier free guidance
|
1256 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1257 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1258 |
+
|
1259 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1260 |
+
|
1261 |
+
# controlnet(s) inference
|
1262 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1263 |
+
# Infer ControlNet only for the conditional batch.
|
1264 |
+
control_model_input = latents
|
1265 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1266 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1267 |
+
controlnet_added_cond_kwargs = {
|
1268 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1269 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
1270 |
+
}
|
1271 |
+
else:
|
1272 |
+
control_model_input = latent_model_input
|
1273 |
+
controlnet_prompt_embeds = prompt_embeds
|
1274 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1275 |
+
|
1276 |
+
if isinstance(controlnet_keep[i], list):
|
1277 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1278 |
+
else:
|
1279 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1280 |
+
if isinstance(controlnet_cond_scale, list):
|
1281 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1282 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1283 |
+
|
1284 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1285 |
+
control_model_input,
|
1286 |
+
t,
|
1287 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1288 |
+
controlnet_cond=control_image,
|
1289 |
+
conditioning_scale=cond_scale,
|
1290 |
+
guess_mode=guess_mode,
|
1291 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1292 |
+
return_dict=False,
|
1293 |
+
)
|
1294 |
+
|
1295 |
+
if guess_mode and self.do_classifier_free_guidance:
|
1296 |
+
# Infered ControlNet only for the conditional batch.
|
1297 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1298 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1299 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1300 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1301 |
+
|
1302 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1303 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1304 |
+
|
1305 |
+
# predict the noise residual
|
1306 |
+
noise_pred = self.unet(
|
1307 |
+
latent_model_input,
|
1308 |
+
t,
|
1309 |
+
encoder_hidden_states=prompt_embeds,
|
1310 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1311 |
+
down_block_additional_residuals=down_block_res_samples,
|
1312 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1313 |
+
added_cond_kwargs=added_cond_kwargs,
|
1314 |
+
return_dict=False,
|
1315 |
+
)[0]
|
1316 |
+
|
1317 |
+
# perform guidance
|
1318 |
+
if self.do_classifier_free_guidance:
|
1319 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1320 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1321 |
+
|
1322 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1323 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1324 |
+
|
1325 |
+
# call the callback, if provided
|
1326 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1327 |
+
progress_bar.update()
|
1328 |
+
if callback is not None and i % callback_steps == 0:
|
1329 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1330 |
+
callback(step_idx, t, latents)
|
1331 |
+
|
1332 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1333 |
+
# manually for max memory savings
|
1334 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1335 |
+
self.unet.to("cpu")
|
1336 |
+
self.controlnet.to("cpu")
|
1337 |
+
torch.cuda.empty_cache()
|
1338 |
+
|
1339 |
+
if not output_type == "latent":
|
1340 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1341 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1342 |
+
|
1343 |
+
if needs_upcasting:
|
1344 |
+
self.upcast_vae()
|
1345 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1346 |
+
|
1347 |
+
latents = latents / self.vae.config.scaling_factor
|
1348 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1349 |
+
|
1350 |
+
# cast back to fp16 if needed
|
1351 |
+
if needs_upcasting:
|
1352 |
+
self.vae.to(dtype=torch.float16)
|
1353 |
+
else:
|
1354 |
+
image = latents
|
1355 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
1356 |
+
|
1357 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1358 |
+
|
1359 |
+
# Offload all models
|
1360 |
+
self.maybe_free_model_hooks()
|
1361 |
+
|
1362 |
+
if not return_dict:
|
1363 |
+
return (image,)
|
1364 |
+
|
1365 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256.py
ADDED
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import sys
|
15 |
+
import os
|
16 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
17 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
18 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
19 |
+
import inspect
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
21 |
+
import torch
|
22 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
23 |
+
from transformers import XLMRobertaModel, ChineseCLIPTextModel
|
24 |
+
|
25 |
+
from diffusers.image_processor import VaeImageProcessor
|
26 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
28 |
+
from diffusers.models.attention_processor import (
|
29 |
+
AttnProcessor2_0,
|
30 |
+
LoRAAttnProcessor2_0,
|
31 |
+
LoRAXFormersAttnProcessor,
|
32 |
+
XFormersAttnProcessor,
|
33 |
+
)
|
34 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
35 |
+
from diffusers.utils import (
|
36 |
+
is_accelerate_available,
|
37 |
+
is_accelerate_version,
|
38 |
+
logging,
|
39 |
+
replace_example_docstring,
|
40 |
+
)
|
41 |
+
try:
|
42 |
+
from diffusers.utils import randn_tensor
|
43 |
+
except:
|
44 |
+
from diffusers.utils.torch_utils import randn_tensor
|
45 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
46 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
EXAMPLE_DOC_STRING = """
|
53 |
+
Examples:
|
54 |
+
```py
|
55 |
+
>>> import torch
|
56 |
+
>>> from diffusers import StableDiffusionXLPipeline
|
57 |
+
|
58 |
+
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
|
59 |
+
... "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
|
60 |
+
... )
|
61 |
+
>>> pipe = pipe.to("cuda")
|
62 |
+
|
63 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
64 |
+
>>> image = pipe(prompt).images[0]
|
65 |
+
```
|
66 |
+
"""
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
70 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
71 |
+
"""
|
72 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
73 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
74 |
+
"""
|
75 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
76 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
77 |
+
# rescale the results from guidance (fixes overexposure)
|
78 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
79 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
80 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
81 |
+
return noise_cfg
|
82 |
+
|
83 |
+
|
84 |
+
class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
|
85 |
+
r"""
|
86 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
87 |
+
|
88 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
89 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
90 |
+
|
91 |
+
In addition the pipeline inherits the following loading methods:
|
92 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
93 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
|
94 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
95 |
+
|
96 |
+
as well as the following saving methods:
|
97 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
|
98 |
+
|
99 |
+
Args:
|
100 |
+
vae ([`AutoencoderKL`]):
|
101 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
102 |
+
text_encoder ([`CLIPTextModel`]):
|
103 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
104 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
105 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
106 |
+
|
107 |
+
tokenizer (`CLIPTokenizer`):
|
108 |
+
Tokenizer of class
|
109 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
110 |
+
|
111 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
112 |
+
scheduler ([`SchedulerMixin`]):
|
113 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
114 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vae: AutoencoderKL,
|
120 |
+
text_encoder: ChatGLMModel,
|
121 |
+
tokenizer: ChatGLMTokenizer,
|
122 |
+
unet: UNet2DConditionModel,
|
123 |
+
scheduler: KarrasDiffusionSchedulers,
|
124 |
+
force_zeros_for_empty_prompt: bool = True,
|
125 |
+
):
|
126 |
+
super().__init__()
|
127 |
+
|
128 |
+
self.register_modules(
|
129 |
+
vae=vae,
|
130 |
+
text_encoder=text_encoder,
|
131 |
+
tokenizer=tokenizer,
|
132 |
+
unet=unet,
|
133 |
+
scheduler=scheduler,
|
134 |
+
)
|
135 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
136 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
137 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
138 |
+
self.default_sample_size = self.unet.config.sample_size
|
139 |
+
|
140 |
+
# self.watermark = StableDiffusionXLWatermarker()
|
141 |
+
|
142 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
143 |
+
def enable_vae_slicing(self):
|
144 |
+
r"""
|
145 |
+
Enable sliced VAE decoding.
|
146 |
+
|
147 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
148 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
149 |
+
"""
|
150 |
+
self.vae.enable_slicing()
|
151 |
+
|
152 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
153 |
+
def disable_vae_slicing(self):
|
154 |
+
r"""
|
155 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
156 |
+
computing decoding in one step.
|
157 |
+
"""
|
158 |
+
self.vae.disable_slicing()
|
159 |
+
|
160 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
161 |
+
def enable_vae_tiling(self):
|
162 |
+
r"""
|
163 |
+
Enable tiled VAE decoding.
|
164 |
+
|
165 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
166 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
167 |
+
"""
|
168 |
+
self.vae.enable_tiling()
|
169 |
+
|
170 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
171 |
+
def disable_vae_tiling(self):
|
172 |
+
r"""
|
173 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
174 |
+
computing decoding in one step.
|
175 |
+
"""
|
176 |
+
self.vae.disable_tiling()
|
177 |
+
|
178 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
179 |
+
r"""
|
180 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
181 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
182 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
183 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
184 |
+
`enable_model_cpu_offload`, but performance is lower.
|
185 |
+
"""
|
186 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
187 |
+
from accelerate import cpu_offload
|
188 |
+
else:
|
189 |
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
190 |
+
|
191 |
+
device = torch.device(f"cuda:{gpu_id}")
|
192 |
+
|
193 |
+
if self.device.type != "cpu":
|
194 |
+
self.to("cpu", silence_dtype_warnings=True)
|
195 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
196 |
+
|
197 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
198 |
+
cpu_offload(cpu_offloaded_model, device)
|
199 |
+
|
200 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
201 |
+
r"""
|
202 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
203 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
204 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
205 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
206 |
+
"""
|
207 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
208 |
+
from accelerate import cpu_offload_with_hook
|
209 |
+
else:
|
210 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
211 |
+
|
212 |
+
device = torch.device(f"cuda:{gpu_id}")
|
213 |
+
|
214 |
+
if self.device.type != "cpu":
|
215 |
+
self.to("cpu", silence_dtype_warnings=True)
|
216 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
217 |
+
|
218 |
+
model_sequence = (
|
219 |
+
[self.text_encoder]
|
220 |
+
)
|
221 |
+
model_sequence.extend([self.unet, self.vae])
|
222 |
+
|
223 |
+
hook = None
|
224 |
+
for cpu_offloaded_model in model_sequence:
|
225 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
226 |
+
|
227 |
+
# We'll offload the last model manually.
|
228 |
+
self.final_offload_hook = hook
|
229 |
+
|
230 |
+
@property
|
231 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
232 |
+
def _execution_device(self):
|
233 |
+
r"""
|
234 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
235 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
236 |
+
hooks.
|
237 |
+
"""
|
238 |
+
if not hasattr(self.unet, "_hf_hook"):
|
239 |
+
return self.device
|
240 |
+
for module in self.unet.modules():
|
241 |
+
if (
|
242 |
+
hasattr(module, "_hf_hook")
|
243 |
+
and hasattr(module._hf_hook, "execution_device")
|
244 |
+
and module._hf_hook.execution_device is not None
|
245 |
+
):
|
246 |
+
return torch.device(module._hf_hook.execution_device)
|
247 |
+
return self.device
|
248 |
+
|
249 |
+
def encode_prompt(
|
250 |
+
self,
|
251 |
+
prompt,
|
252 |
+
device: Optional[torch.device] = None,
|
253 |
+
num_images_per_prompt: int = 1,
|
254 |
+
do_classifier_free_guidance: bool = True,
|
255 |
+
negative_prompt=None,
|
256 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
257 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
258 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
259 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
260 |
+
lora_scale: Optional[float] = None,
|
261 |
+
):
|
262 |
+
r"""
|
263 |
+
Encodes the prompt into text encoder hidden states.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
prompt (`str` or `List[str]`, *optional*):
|
267 |
+
prompt to be encoded
|
268 |
+
device: (`torch.device`):
|
269 |
+
torch device
|
270 |
+
num_images_per_prompt (`int`):
|
271 |
+
number of images that should be generated per prompt
|
272 |
+
do_classifier_free_guidance (`bool`):
|
273 |
+
whether to use classifier free guidance or not
|
274 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
275 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
276 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
277 |
+
less than `1`).
|
278 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
279 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
280 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
281 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
282 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
283 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
284 |
+
argument.
|
285 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
286 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
287 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
288 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
289 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
290 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
291 |
+
input argument.
|
292 |
+
lora_scale (`float`, *optional*):
|
293 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
294 |
+
"""
|
295 |
+
# from IPython import embed; embed(); exit()
|
296 |
+
device = device or self._execution_device
|
297 |
+
|
298 |
+
# set lora scale so that monkey patched LoRA
|
299 |
+
# function of text encoder can correctly access it
|
300 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
301 |
+
self._lora_scale = lora_scale
|
302 |
+
|
303 |
+
if prompt is not None and isinstance(prompt, str):
|
304 |
+
batch_size = 1
|
305 |
+
elif prompt is not None and isinstance(prompt, list):
|
306 |
+
batch_size = len(prompt)
|
307 |
+
else:
|
308 |
+
batch_size = prompt_embeds.shape[0]
|
309 |
+
|
310 |
+
# Define tokenizers and text encoders
|
311 |
+
tokenizers = [self.tokenizer]
|
312 |
+
text_encoders = [self.text_encoder]
|
313 |
+
|
314 |
+
if prompt_embeds is None:
|
315 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
316 |
+
prompt_embeds_list = []
|
317 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
318 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
319 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
320 |
+
|
321 |
+
text_inputs = tokenizer(
|
322 |
+
prompt,
|
323 |
+
padding="max_length",
|
324 |
+
max_length=256,
|
325 |
+
truncation=True,
|
326 |
+
return_tensors="pt",
|
327 |
+
).to('cuda')
|
328 |
+
output = text_encoder(
|
329 |
+
input_ids=text_inputs['input_ids'] ,
|
330 |
+
attention_mask=text_inputs['attention_mask'],
|
331 |
+
position_ids=text_inputs['position_ids'],
|
332 |
+
output_hidden_states=True)
|
333 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
334 |
+
pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
335 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
336 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
337 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
338 |
+
|
339 |
+
prompt_embeds_list.append(prompt_embeds)
|
340 |
+
|
341 |
+
# prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
342 |
+
prompt_embeds = prompt_embeds_list[0]
|
343 |
+
|
344 |
+
# get unconditional embeddings for classifier free guidance
|
345 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
346 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
347 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
348 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
349 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
350 |
+
# negative_prompt = negative_prompt or ""
|
351 |
+
uncond_tokens: List[str]
|
352 |
+
if negative_prompt is None:
|
353 |
+
uncond_tokens = [""] * batch_size
|
354 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
355 |
+
raise TypeError(
|
356 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
357 |
+
f" {type(prompt)}."
|
358 |
+
)
|
359 |
+
elif isinstance(negative_prompt, str):
|
360 |
+
uncond_tokens = [negative_prompt]
|
361 |
+
elif batch_size != len(negative_prompt):
|
362 |
+
raise ValueError(
|
363 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
364 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
365 |
+
" the batch size of `prompt`."
|
366 |
+
)
|
367 |
+
else:
|
368 |
+
uncond_tokens = negative_prompt
|
369 |
+
|
370 |
+
negative_prompt_embeds_list = []
|
371 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
372 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
373 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
374 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
375 |
+
|
376 |
+
max_length = prompt_embeds.shape[1]
|
377 |
+
uncond_input = tokenizer(
|
378 |
+
uncond_tokens,
|
379 |
+
padding="max_length",
|
380 |
+
max_length=max_length,
|
381 |
+
truncation=True,
|
382 |
+
return_tensors="pt",
|
383 |
+
).to('cuda')
|
384 |
+
output = text_encoder(
|
385 |
+
input_ids=uncond_input['input_ids'] ,
|
386 |
+
attention_mask=uncond_input['attention_mask'],
|
387 |
+
position_ids=uncond_input['position_ids'],
|
388 |
+
output_hidden_states=True)
|
389 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
390 |
+
negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
391 |
+
|
392 |
+
if do_classifier_free_guidance:
|
393 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
394 |
+
seq_len = negative_prompt_embeds.shape[1]
|
395 |
+
|
396 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
397 |
+
|
398 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
399 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
400 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
401 |
+
)
|
402 |
+
|
403 |
+
# For classifier free guidance, we need to do two forward passes.
|
404 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
405 |
+
# to avoid doing two forward passes
|
406 |
+
|
407 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
408 |
+
|
409 |
+
# negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
410 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
411 |
+
|
412 |
+
bs_embed = pooled_prompt_embeds.shape[0]
|
413 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
414 |
+
bs_embed * num_images_per_prompt, -1
|
415 |
+
)
|
416 |
+
if do_classifier_free_guidance:
|
417 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
418 |
+
bs_embed * num_images_per_prompt, -1
|
419 |
+
)
|
420 |
+
|
421 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
422 |
+
|
423 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
424 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
425 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
426 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
427 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
428 |
+
# and should be between [0, 1]
|
429 |
+
|
430 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
431 |
+
extra_step_kwargs = {}
|
432 |
+
if accepts_eta:
|
433 |
+
extra_step_kwargs["eta"] = eta
|
434 |
+
|
435 |
+
# check if the scheduler accepts generator
|
436 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
437 |
+
if accepts_generator:
|
438 |
+
extra_step_kwargs["generator"] = generator
|
439 |
+
return extra_step_kwargs
|
440 |
+
|
441 |
+
def check_inputs(
|
442 |
+
self,
|
443 |
+
prompt,
|
444 |
+
height,
|
445 |
+
width,
|
446 |
+
callback_steps,
|
447 |
+
negative_prompt=None,
|
448 |
+
prompt_embeds=None,
|
449 |
+
negative_prompt_embeds=None,
|
450 |
+
pooled_prompt_embeds=None,
|
451 |
+
negative_pooled_prompt_embeds=None,
|
452 |
+
):
|
453 |
+
if height % 8 != 0 or width % 8 != 0:
|
454 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
455 |
+
|
456 |
+
if (callback_steps is None) or (
|
457 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
458 |
+
):
|
459 |
+
raise ValueError(
|
460 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
461 |
+
f" {type(callback_steps)}."
|
462 |
+
)
|
463 |
+
|
464 |
+
if prompt is not None and prompt_embeds is not None:
|
465 |
+
raise ValueError(
|
466 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
467 |
+
" only forward one of the two."
|
468 |
+
)
|
469 |
+
elif prompt is None and prompt_embeds is None:
|
470 |
+
raise ValueError(
|
471 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
472 |
+
)
|
473 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
474 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
475 |
+
|
476 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
477 |
+
raise ValueError(
|
478 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
479 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
480 |
+
)
|
481 |
+
|
482 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
483 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
484 |
+
raise ValueError(
|
485 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
486 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
487 |
+
f" {negative_prompt_embeds.shape}."
|
488 |
+
)
|
489 |
+
|
490 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
491 |
+
raise ValueError(
|
492 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
493 |
+
)
|
494 |
+
|
495 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
496 |
+
raise ValueError(
|
497 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
498 |
+
)
|
499 |
+
|
500 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
501 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
502 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
503 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
504 |
+
raise ValueError(
|
505 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
506 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
507 |
+
)
|
508 |
+
|
509 |
+
if latents is None:
|
510 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
511 |
+
else:
|
512 |
+
latents = latents.to(device)
|
513 |
+
|
514 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
515 |
+
latents = latents * self.scheduler.init_noise_sigma
|
516 |
+
return latents
|
517 |
+
|
518 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
519 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
520 |
+
|
521 |
+
passed_add_embed_dim = (
|
522 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
523 |
+
)
|
524 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
525 |
+
|
526 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
527 |
+
raise ValueError(
|
528 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
529 |
+
)
|
530 |
+
|
531 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
532 |
+
return add_time_ids
|
533 |
+
|
534 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
535 |
+
def upcast_vae(self):
|
536 |
+
dtype = self.vae.dtype
|
537 |
+
self.vae.to(dtype=torch.float32)
|
538 |
+
use_torch_2_0_or_xformers = isinstance(
|
539 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
540 |
+
(
|
541 |
+
AttnProcessor2_0,
|
542 |
+
XFormersAttnProcessor,
|
543 |
+
LoRAXFormersAttnProcessor,
|
544 |
+
LoRAAttnProcessor2_0,
|
545 |
+
),
|
546 |
+
)
|
547 |
+
# if xformers or torch_2_0 is used attention block does not need
|
548 |
+
# to be in float32 which can save lots of memory
|
549 |
+
if use_torch_2_0_or_xformers:
|
550 |
+
self.vae.post_quant_conv.to(dtype)
|
551 |
+
self.vae.decoder.conv_in.to(dtype)
|
552 |
+
self.vae.decoder.mid_block.to(dtype)
|
553 |
+
|
554 |
+
@torch.no_grad()
|
555 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
556 |
+
def __call__(
|
557 |
+
self,
|
558 |
+
prompt: Union[str, List[str]] = None,
|
559 |
+
height: Optional[int] = None,
|
560 |
+
width: Optional[int] = None,
|
561 |
+
num_inference_steps: int = 50,
|
562 |
+
denoising_end: Optional[float] = None,
|
563 |
+
guidance_scale: float = 5.0,
|
564 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
565 |
+
num_images_per_prompt: Optional[int] = 1,
|
566 |
+
eta: float = 0.0,
|
567 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
568 |
+
latents: Optional[torch.FloatTensor] = None,
|
569 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
570 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
571 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
572 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
573 |
+
output_type: Optional[str] = "pil",
|
574 |
+
return_dict: bool = True,
|
575 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
576 |
+
callback_steps: int = 1,
|
577 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
578 |
+
guidance_rescale: float = 0.0,
|
579 |
+
original_size: Optional[Tuple[int, int]] = None,
|
580 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
581 |
+
target_size: Optional[Tuple[int, int]] = None,
|
582 |
+
use_dynamic_threshold: Optional[bool] = False,
|
583 |
+
):
|
584 |
+
r"""
|
585 |
+
Function invoked when calling the pipeline for generation.
|
586 |
+
|
587 |
+
Args:
|
588 |
+
prompt (`str` or `List[str]`, *optional*):
|
589 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
590 |
+
instead.
|
591 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
592 |
+
The height in pixels of the generated image.
|
593 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
594 |
+
The width in pixels of the generated image.
|
595 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
596 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
597 |
+
expense of slower inference.
|
598 |
+
denoising_end (`float`, *optional*):
|
599 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
600 |
+
completed before it is intentionally prematurely terminated. For instance, if denoising_end is set to
|
601 |
+
0.7 and `num_inference_steps` is fixed at 50, the process will execute only 35 (i.e., 0.7 * 50)
|
602 |
+
Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
603 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
604 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
605 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
606 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
607 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
608 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
609 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
610 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
611 |
+
less than `1`).
|
612 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
613 |
+
The number of images to generate per prompt.
|
614 |
+
eta (`float`, *optional*, defaults to 0.0):
|
615 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
616 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
617 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
618 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
619 |
+
to make generation deterministic.
|
620 |
+
latents (`torch.FloatTensor`, *optional*):
|
621 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
622 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
623 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
624 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
625 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
626 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
627 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
628 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
629 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
630 |
+
argument.
|
631 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
632 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
633 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
634 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
635 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
636 |
+
The output format of the generate image. Choose between
|
637 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
638 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
639 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
640 |
+
callback (`Callable`, *optional*):
|
641 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
642 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
643 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
644 |
+
called at every step.
|
645 |
+
cross_attention_kwargs (`dict`, *optional*):
|
646 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
647 |
+
`self.processor` in
|
648 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
649 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
650 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
651 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
652 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
653 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
654 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
655 |
+
TODO
|
656 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
657 |
+
TODO
|
658 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
659 |
+
TODO
|
660 |
+
|
661 |
+
Examples:
|
662 |
+
|
663 |
+
Returns:
|
664 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
665 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
666 |
+
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
|
667 |
+
element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
668 |
+
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
669 |
+
"""
|
670 |
+
# 0. Default height and width to unet
|
671 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
672 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
673 |
+
|
674 |
+
original_size = original_size or (height, width)
|
675 |
+
target_size = target_size or (height, width)
|
676 |
+
|
677 |
+
# 1. Check inputs. Raise error if not correct
|
678 |
+
self.check_inputs(
|
679 |
+
prompt,
|
680 |
+
height,
|
681 |
+
width,
|
682 |
+
callback_steps,
|
683 |
+
negative_prompt,
|
684 |
+
prompt_embeds,
|
685 |
+
negative_prompt_embeds,
|
686 |
+
pooled_prompt_embeds,
|
687 |
+
negative_pooled_prompt_embeds,
|
688 |
+
)
|
689 |
+
|
690 |
+
# 2. Define call parameters
|
691 |
+
if prompt is not None and isinstance(prompt, str):
|
692 |
+
batch_size = 1
|
693 |
+
elif prompt is not None and isinstance(prompt, list):
|
694 |
+
batch_size = len(prompt)
|
695 |
+
else:
|
696 |
+
batch_size = prompt_embeds.shape[0]
|
697 |
+
|
698 |
+
device = self._execution_device
|
699 |
+
|
700 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
701 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
702 |
+
# corresponds to doing no classifier free guidance.
|
703 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
704 |
+
|
705 |
+
# 3. Encode input prompt
|
706 |
+
text_encoder_lora_scale = (
|
707 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
708 |
+
)
|
709 |
+
(
|
710 |
+
prompt_embeds,
|
711 |
+
negative_prompt_embeds,
|
712 |
+
pooled_prompt_embeds,
|
713 |
+
negative_pooled_prompt_embeds,
|
714 |
+
) = self.encode_prompt(
|
715 |
+
prompt,
|
716 |
+
device,
|
717 |
+
num_images_per_prompt,
|
718 |
+
do_classifier_free_guidance,
|
719 |
+
negative_prompt,
|
720 |
+
prompt_embeds=prompt_embeds,
|
721 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
722 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
723 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
724 |
+
lora_scale=text_encoder_lora_scale,
|
725 |
+
)
|
726 |
+
|
727 |
+
# 4. Prepare timesteps
|
728 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
729 |
+
|
730 |
+
timesteps = self.scheduler.timesteps
|
731 |
+
|
732 |
+
# 5. Prepare latent variables
|
733 |
+
num_channels_latents = self.unet.config.in_channels
|
734 |
+
latents = self.prepare_latents(
|
735 |
+
batch_size * num_images_per_prompt,
|
736 |
+
num_channels_latents,
|
737 |
+
height,
|
738 |
+
width,
|
739 |
+
prompt_embeds.dtype,
|
740 |
+
device,
|
741 |
+
generator,
|
742 |
+
latents,
|
743 |
+
)
|
744 |
+
|
745 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
746 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
747 |
+
|
748 |
+
# 7. Prepare added time ids & embeddings
|
749 |
+
add_text_embeds = pooled_prompt_embeds
|
750 |
+
add_time_ids = self._get_add_time_ids(
|
751 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
752 |
+
)
|
753 |
+
|
754 |
+
if do_classifier_free_guidance:
|
755 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
756 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
757 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
758 |
+
|
759 |
+
prompt_embeds = prompt_embeds.to(device)
|
760 |
+
add_text_embeds = add_text_embeds.to(device)
|
761 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
762 |
+
|
763 |
+
# 8. Denoising loop
|
764 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
765 |
+
|
766 |
+
# 7.1 Apply denoising_end
|
767 |
+
if denoising_end is not None:
|
768 |
+
num_inference_steps = int(round(denoising_end * num_inference_steps))
|
769 |
+
timesteps = timesteps[: num_warmup_steps + self.scheduler.order * num_inference_steps]
|
770 |
+
|
771 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
772 |
+
for i, t in enumerate(timesteps):
|
773 |
+
# expand the latents if we are doing classifier free guidance
|
774 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
775 |
+
|
776 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
777 |
+
|
778 |
+
# predict the noise residual
|
779 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
780 |
+
noise_pred = self.unet(
|
781 |
+
latent_model_input,
|
782 |
+
t,
|
783 |
+
encoder_hidden_states=prompt_embeds,
|
784 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
785 |
+
added_cond_kwargs=added_cond_kwargs,
|
786 |
+
return_dict=False,
|
787 |
+
)[0]
|
788 |
+
|
789 |
+
# perform guidance
|
790 |
+
if do_classifier_free_guidance:
|
791 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
792 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
793 |
+
if use_dynamic_threshold:
|
794 |
+
DynamicThresh = DynThresh(maxSteps=num_inference_steps, experiment_mode=0)
|
795 |
+
noise_pred = DynamicThresh.dynthresh(noise_pred_text,
|
796 |
+
noise_pred_uncond,
|
797 |
+
guidance_scale,
|
798 |
+
None)
|
799 |
+
|
800 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
801 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
802 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
803 |
+
|
804 |
+
# compute the previous noisy sample x_t -> x_t-1
|
805 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
806 |
+
|
807 |
+
# call the callback, if provided
|
808 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
809 |
+
progress_bar.update()
|
810 |
+
if callback is not None and i % callback_steps == 0:
|
811 |
+
callback(i, t, latents)
|
812 |
+
|
813 |
+
# make sureo the VAE is in float32 mode, as it overflows in float16
|
814 |
+
# torch.cuda.empty_cache()
|
815 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
816 |
+
self.upcast_vae()
|
817 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
818 |
+
|
819 |
+
|
820 |
+
if not output_type == "latent":
|
821 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
822 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
823 |
+
else:
|
824 |
+
image = latents
|
825 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
826 |
+
|
827 |
+
# image = self.watermark.apply_watermark(image)
|
828 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
829 |
+
|
830 |
+
# Offload last model to CPU
|
831 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
832 |
+
self.final_offload_hook.offload()
|
833 |
+
|
834 |
+
if not return_dict:
|
835 |
+
return (image,)
|
836 |
+
|
837 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
838 |
+
|
839 |
+
|
840 |
+
if __name__ == "__main__":
|
841 |
+
pass
|
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_inpainting.py
ADDED
@@ -0,0 +1,1790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL.Image
|
20 |
+
import torch
|
21 |
+
from transformers import (
|
22 |
+
CLIPImageProcessor,
|
23 |
+
CLIPTextModel,
|
24 |
+
CLIPTextModelWithProjection,
|
25 |
+
CLIPTokenizer,
|
26 |
+
CLIPVisionModelWithProjection,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
30 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
31 |
+
from diffusers.loaders import (
|
32 |
+
FromSingleFileMixin,
|
33 |
+
IPAdapterMixin,
|
34 |
+
StableDiffusionXLLoraLoaderMixin,
|
35 |
+
TextualInversionLoaderMixin,
|
36 |
+
)
|
37 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
38 |
+
from diffusers.models.attention_processor import (
|
39 |
+
AttnProcessor2_0,
|
40 |
+
LoRAAttnProcessor2_0,
|
41 |
+
LoRAXFormersAttnProcessor,
|
42 |
+
XFormersAttnProcessor,
|
43 |
+
)
|
44 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
45 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
46 |
+
from diffusers.utils import (
|
47 |
+
USE_PEFT_BACKEND,
|
48 |
+
deprecate,
|
49 |
+
is_invisible_watermark_available,
|
50 |
+
is_torch_xla_available,
|
51 |
+
logging,
|
52 |
+
replace_example_docstring,
|
53 |
+
scale_lora_layers,
|
54 |
+
unscale_lora_layers,
|
55 |
+
)
|
56 |
+
from diffusers.utils.torch_utils import randn_tensor
|
57 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
58 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
59 |
+
|
60 |
+
|
61 |
+
if is_invisible_watermark_available():
|
62 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
63 |
+
|
64 |
+
if is_torch_xla_available():
|
65 |
+
import torch_xla.core.xla_model as xm
|
66 |
+
|
67 |
+
XLA_AVAILABLE = True
|
68 |
+
else:
|
69 |
+
XLA_AVAILABLE = False
|
70 |
+
|
71 |
+
|
72 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
73 |
+
|
74 |
+
|
75 |
+
EXAMPLE_DOC_STRING = """
|
76 |
+
Examples:
|
77 |
+
```py
|
78 |
+
>>> import torch
|
79 |
+
>>> from diffusers import StableDiffusionXLInpaintPipeline
|
80 |
+
>>> from diffusers.utils import load_image
|
81 |
+
|
82 |
+
>>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
83 |
+
... "stabilityai/stable-diffusion-xl-base-1.0",
|
84 |
+
... torch_dtype=torch.float16,
|
85 |
+
... variant="fp16",
|
86 |
+
... use_safetensors=True,
|
87 |
+
... )
|
88 |
+
>>> pipe.to("cuda")
|
89 |
+
|
90 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
91 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
92 |
+
|
93 |
+
>>> init_image = load_image(img_url).convert("RGB")
|
94 |
+
>>> mask_image = load_image(mask_url).convert("RGB")
|
95 |
+
|
96 |
+
>>> prompt = "A majestic tiger sitting on a bench"
|
97 |
+
>>> image = pipe(
|
98 |
+
... prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80
|
99 |
+
... ).images[0]
|
100 |
+
```
|
101 |
+
"""
|
102 |
+
|
103 |
+
|
104 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
105 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
106 |
+
"""
|
107 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
108 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
109 |
+
"""
|
110 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
111 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
112 |
+
# rescale the results from guidance (fixes overexposure)
|
113 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
114 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
115 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
116 |
+
return noise_cfg
|
117 |
+
|
118 |
+
|
119 |
+
def mask_pil_to_torch(mask, height, width):
|
120 |
+
# preprocess mask
|
121 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
122 |
+
mask = [mask]
|
123 |
+
|
124 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
125 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
126 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
127 |
+
mask = mask.astype(np.float32) / 255.0
|
128 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
129 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
130 |
+
|
131 |
+
mask = torch.from_numpy(mask)
|
132 |
+
return mask
|
133 |
+
|
134 |
+
|
135 |
+
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
136 |
+
"""
|
137 |
+
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
138 |
+
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
139 |
+
``image`` and ``1`` for the ``mask``.
|
140 |
+
|
141 |
+
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
142 |
+
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
143 |
+
|
144 |
+
Args:
|
145 |
+
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
146 |
+
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
147 |
+
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
148 |
+
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
149 |
+
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
150 |
+
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
151 |
+
|
152 |
+
|
153 |
+
Raises:
|
154 |
+
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
155 |
+
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
156 |
+
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
157 |
+
(ot the other way around).
|
158 |
+
|
159 |
+
Returns:
|
160 |
+
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
161 |
+
dimensions: ``batch x channels x height x width``.
|
162 |
+
"""
|
163 |
+
|
164 |
+
# checkpoint. TOD(Yiyi) - need to clean this up later
|
165 |
+
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
166 |
+
deprecate(
|
167 |
+
"prepare_mask_and_masked_image",
|
168 |
+
"0.30.0",
|
169 |
+
deprecation_message,
|
170 |
+
)
|
171 |
+
if image is None:
|
172 |
+
raise ValueError("`image` input cannot be undefined.")
|
173 |
+
|
174 |
+
if mask is None:
|
175 |
+
raise ValueError("`mask_image` input cannot be undefined.")
|
176 |
+
|
177 |
+
if isinstance(image, torch.Tensor):
|
178 |
+
if not isinstance(mask, torch.Tensor):
|
179 |
+
mask = mask_pil_to_torch(mask, height, width)
|
180 |
+
|
181 |
+
if image.ndim == 3:
|
182 |
+
image = image.unsqueeze(0)
|
183 |
+
|
184 |
+
# Batch and add channel dim for single mask
|
185 |
+
if mask.ndim == 2:
|
186 |
+
mask = mask.unsqueeze(0).unsqueeze(0)
|
187 |
+
|
188 |
+
# Batch single mask or add channel dim
|
189 |
+
if mask.ndim == 3:
|
190 |
+
# Single batched mask, no channel dim or single mask not batched but channel dim
|
191 |
+
if mask.shape[0] == 1:
|
192 |
+
mask = mask.unsqueeze(0)
|
193 |
+
|
194 |
+
# Batched masks no channel dim
|
195 |
+
else:
|
196 |
+
mask = mask.unsqueeze(1)
|
197 |
+
|
198 |
+
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
199 |
+
# assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
200 |
+
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
201 |
+
|
202 |
+
# Check image is in [-1, 1]
|
203 |
+
# if image.min() < -1 or image.max() > 1:
|
204 |
+
# raise ValueError("Image should be in [-1, 1] range")
|
205 |
+
|
206 |
+
# Check mask is in [0, 1]
|
207 |
+
if mask.min() < 0 or mask.max() > 1:
|
208 |
+
raise ValueError("Mask should be in [0, 1] range")
|
209 |
+
|
210 |
+
# Binarize mask
|
211 |
+
mask[mask < 0.5] = 0
|
212 |
+
mask[mask >= 0.5] = 1
|
213 |
+
|
214 |
+
# Image as float32
|
215 |
+
image = image.to(dtype=torch.float32)
|
216 |
+
elif isinstance(mask, torch.Tensor):
|
217 |
+
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
218 |
+
else:
|
219 |
+
# preprocess image
|
220 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
221 |
+
image = [image]
|
222 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
223 |
+
# resize all images w.r.t passed height an width
|
224 |
+
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
225 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
226 |
+
image = np.concatenate(image, axis=0)
|
227 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
228 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
229 |
+
|
230 |
+
image = image.transpose(0, 3, 1, 2)
|
231 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
232 |
+
|
233 |
+
mask = mask_pil_to_torch(mask, height, width)
|
234 |
+
mask[mask < 0.5] = 0
|
235 |
+
mask[mask >= 0.5] = 1
|
236 |
+
|
237 |
+
if image.shape[1] == 4:
|
238 |
+
# images are in latent space and thus can't
|
239 |
+
# be masked set masked_image to None
|
240 |
+
# we assume that the checkpoint is not an inpainting
|
241 |
+
# checkpoint. TOD(Yiyi) - need to clean this up later
|
242 |
+
masked_image = None
|
243 |
+
else:
|
244 |
+
masked_image = image * (mask < 0.5)
|
245 |
+
|
246 |
+
# n.b. ensure backwards compatibility as old function does not return image
|
247 |
+
if return_image:
|
248 |
+
return mask, masked_image, image
|
249 |
+
|
250 |
+
return mask, masked_image
|
251 |
+
|
252 |
+
|
253 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
254 |
+
def retrieve_latents(
|
255 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
256 |
+
):
|
257 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
258 |
+
return encoder_output.latent_dist.sample(generator)
|
259 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
260 |
+
return encoder_output.latent_dist.mode()
|
261 |
+
elif hasattr(encoder_output, "latents"):
|
262 |
+
return encoder_output.latents
|
263 |
+
else:
|
264 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
265 |
+
|
266 |
+
|
267 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
268 |
+
def retrieve_timesteps(
|
269 |
+
scheduler,
|
270 |
+
num_inference_steps: Optional[int] = None,
|
271 |
+
device: Optional[Union[str, torch.device]] = None,
|
272 |
+
timesteps: Optional[List[int]] = None,
|
273 |
+
sigmas: Optional[List[float]] = None,
|
274 |
+
**kwargs,
|
275 |
+
):
|
276 |
+
"""
|
277 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
278 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
scheduler (`SchedulerMixin`):
|
282 |
+
The scheduler to get timesteps from.
|
283 |
+
num_inference_steps (`int`):
|
284 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
285 |
+
must be `None`.
|
286 |
+
device (`str` or `torch.device`, *optional*):
|
287 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
288 |
+
timesteps (`List[int]`, *optional*):
|
289 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
290 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
291 |
+
sigmas (`List[float]`, *optional*):
|
292 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
293 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
294 |
+
|
295 |
+
Returns:
|
296 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
297 |
+
second element is the number of inference steps.
|
298 |
+
"""
|
299 |
+
if timesteps is not None and sigmas is not None:
|
300 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
301 |
+
if timesteps is not None:
|
302 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
303 |
+
if not accepts_timesteps:
|
304 |
+
raise ValueError(
|
305 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
306 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
307 |
+
)
|
308 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
309 |
+
timesteps = scheduler.timesteps
|
310 |
+
num_inference_steps = len(timesteps)
|
311 |
+
elif sigmas is not None:
|
312 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
313 |
+
if not accept_sigmas:
|
314 |
+
raise ValueError(
|
315 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
316 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
317 |
+
)
|
318 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
319 |
+
timesteps = scheduler.timesteps
|
320 |
+
num_inference_steps = len(timesteps)
|
321 |
+
else:
|
322 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
323 |
+
timesteps = scheduler.timesteps
|
324 |
+
return timesteps, num_inference_steps
|
325 |
+
|
326 |
+
|
327 |
+
class StableDiffusionXLInpaintPipeline(
|
328 |
+
DiffusionPipeline,
|
329 |
+
StableDiffusionMixin,
|
330 |
+
TextualInversionLoaderMixin,
|
331 |
+
StableDiffusionXLLoraLoaderMixin,
|
332 |
+
FromSingleFileMixin,
|
333 |
+
IPAdapterMixin,
|
334 |
+
):
|
335 |
+
r"""
|
336 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
337 |
+
|
338 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
339 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
340 |
+
|
341 |
+
The pipeline also inherits the following loading methods:
|
342 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
343 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
344 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
345 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
346 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
347 |
+
|
348 |
+
Args:
|
349 |
+
vae ([`AutoencoderKL`]):
|
350 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
351 |
+
text_encoder ([`CLIPTextModel`]):
|
352 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
353 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
354 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
355 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
356 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
357 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
358 |
+
specifically the
|
359 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
360 |
+
variant.
|
361 |
+
tokenizer (`CLIPTokenizer`):
|
362 |
+
Tokenizer of class
|
363 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
364 |
+
tokenizer_2 (`CLIPTokenizer`):
|
365 |
+
Second Tokenizer of class
|
366 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
367 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
368 |
+
scheduler ([`SchedulerMixin`]):
|
369 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
370 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
371 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
372 |
+
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
|
373 |
+
of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
374 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
375 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
376 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
377 |
+
add_watermarker (`bool`, *optional*):
|
378 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
379 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
380 |
+
watermarker will be used.
|
381 |
+
"""
|
382 |
+
|
383 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
384 |
+
|
385 |
+
_optional_components = [
|
386 |
+
"tokenizer",
|
387 |
+
"tokenizer_2",
|
388 |
+
"text_encoder",
|
389 |
+
"text_encoder_2",
|
390 |
+
"image_encoder",
|
391 |
+
"feature_extractor",
|
392 |
+
]
|
393 |
+
_callback_tensor_inputs = [
|
394 |
+
"latents",
|
395 |
+
"prompt_embeds",
|
396 |
+
"negative_prompt_embeds",
|
397 |
+
"add_text_embeds",
|
398 |
+
"add_time_ids",
|
399 |
+
"negative_pooled_prompt_embeds",
|
400 |
+
"add_neg_time_ids",
|
401 |
+
"mask",
|
402 |
+
"masked_image_latents",
|
403 |
+
]
|
404 |
+
|
405 |
+
def __init__(
|
406 |
+
self,
|
407 |
+
vae: AutoencoderKL,
|
408 |
+
text_encoder: CLIPTextModel,
|
409 |
+
tokenizer: CLIPTokenizer,
|
410 |
+
unet: UNet2DConditionModel,
|
411 |
+
scheduler: KarrasDiffusionSchedulers,
|
412 |
+
tokenizer_2: CLIPTokenizer = None,
|
413 |
+
text_encoder_2: CLIPTextModelWithProjection = None,
|
414 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
415 |
+
feature_extractor: CLIPImageProcessor = None,
|
416 |
+
requires_aesthetics_score: bool = False,
|
417 |
+
force_zeros_for_empty_prompt: bool = True,
|
418 |
+
add_watermarker: Optional[bool] = None,
|
419 |
+
):
|
420 |
+
super().__init__()
|
421 |
+
|
422 |
+
self.register_modules(
|
423 |
+
vae=vae,
|
424 |
+
text_encoder=text_encoder,
|
425 |
+
text_encoder_2=text_encoder_2,
|
426 |
+
tokenizer=tokenizer,
|
427 |
+
tokenizer_2=tokenizer_2,
|
428 |
+
unet=unet,
|
429 |
+
image_encoder=image_encoder,
|
430 |
+
feature_extractor=feature_extractor,
|
431 |
+
scheduler=scheduler,
|
432 |
+
)
|
433 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
434 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
435 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
436 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
437 |
+
self.mask_processor = VaeImageProcessor(
|
438 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
439 |
+
)
|
440 |
+
|
441 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
442 |
+
|
443 |
+
if add_watermarker:
|
444 |
+
self.watermark = StableDiffusionXLWatermarker()
|
445 |
+
else:
|
446 |
+
self.watermark = None
|
447 |
+
|
448 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
449 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
450 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
451 |
+
|
452 |
+
if not isinstance(image, torch.Tensor):
|
453 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
454 |
+
|
455 |
+
image = image.to(device=device, dtype=dtype)
|
456 |
+
if output_hidden_states:
|
457 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
458 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
459 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
460 |
+
torch.zeros_like(image), output_hidden_states=True
|
461 |
+
).hidden_states[-2]
|
462 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
463 |
+
num_images_per_prompt, dim=0
|
464 |
+
)
|
465 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
466 |
+
else:
|
467 |
+
image_embeds = self.image_encoder(image).image_embeds
|
468 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
469 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
470 |
+
|
471 |
+
return image_embeds, uncond_image_embeds
|
472 |
+
|
473 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
474 |
+
def prepare_ip_adapter_image_embeds(
|
475 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
476 |
+
):
|
477 |
+
if ip_adapter_image_embeds is None:
|
478 |
+
if not isinstance(ip_adapter_image, list):
|
479 |
+
ip_adapter_image = [ip_adapter_image]
|
480 |
+
|
481 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
482 |
+
raise ValueError(
|
483 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
484 |
+
)
|
485 |
+
|
486 |
+
image_embeds = []
|
487 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
488 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
489 |
+
):
|
490 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
491 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
492 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
493 |
+
)
|
494 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
495 |
+
single_negative_image_embeds = torch.stack(
|
496 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
497 |
+
)
|
498 |
+
|
499 |
+
if do_classifier_free_guidance:
|
500 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
501 |
+
single_image_embeds = single_image_embeds.to(device)
|
502 |
+
|
503 |
+
image_embeds.append(single_image_embeds)
|
504 |
+
else:
|
505 |
+
repeat_dims = [1]
|
506 |
+
image_embeds = []
|
507 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
508 |
+
if do_classifier_free_guidance:
|
509 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
510 |
+
single_image_embeds = single_image_embeds.repeat(
|
511 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
512 |
+
)
|
513 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
514 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
515 |
+
)
|
516 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
517 |
+
else:
|
518 |
+
single_image_embeds = single_image_embeds.repeat(
|
519 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
520 |
+
)
|
521 |
+
image_embeds.append(single_image_embeds)
|
522 |
+
|
523 |
+
return image_embeds
|
524 |
+
|
525 |
+
def encode_prompt(
|
526 |
+
self,
|
527 |
+
prompt,
|
528 |
+
device: Optional[torch.device] = None,
|
529 |
+
num_images_per_prompt: int = 1,
|
530 |
+
do_classifier_free_guidance: bool = True,
|
531 |
+
negative_prompt=None,
|
532 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
533 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
534 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
535 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
536 |
+
lora_scale: Optional[float] = None,
|
537 |
+
):
|
538 |
+
r"""
|
539 |
+
Encodes the prompt into text encoder hidden states.
|
540 |
+
|
541 |
+
Args:
|
542 |
+
prompt (`str` or `List[str]`, *optional*):
|
543 |
+
prompt to be encoded
|
544 |
+
device: (`torch.device`):
|
545 |
+
torch device
|
546 |
+
num_images_per_prompt (`int`):
|
547 |
+
number of images that should be generated per prompt
|
548 |
+
do_classifier_free_guidance (`bool`):
|
549 |
+
whether to use classifier free guidance or not
|
550 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
551 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
552 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
553 |
+
less than `1`).
|
554 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
555 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
556 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
557 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
558 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
559 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
560 |
+
argument.
|
561 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
562 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
563 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
564 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
565 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
566 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
567 |
+
input argument.
|
568 |
+
lora_scale (`float`, *optional*):
|
569 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
570 |
+
"""
|
571 |
+
# from IPython import embed; embed(); exit()
|
572 |
+
device = device or self._execution_device
|
573 |
+
|
574 |
+
# set lora scale so that monkey patched LoRA
|
575 |
+
# function of text encoder can correctly access it
|
576 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
577 |
+
self._lora_scale = lora_scale
|
578 |
+
|
579 |
+
if prompt is not None and isinstance(prompt, str):
|
580 |
+
batch_size = 1
|
581 |
+
elif prompt is not None and isinstance(prompt, list):
|
582 |
+
batch_size = len(prompt)
|
583 |
+
else:
|
584 |
+
batch_size = prompt_embeds.shape[0]
|
585 |
+
|
586 |
+
# Define tokenizers and text encoders
|
587 |
+
tokenizers = [self.tokenizer]
|
588 |
+
text_encoders = [self.text_encoder]
|
589 |
+
|
590 |
+
if prompt_embeds is None:
|
591 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
592 |
+
prompt_embeds_list = []
|
593 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
594 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
595 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
596 |
+
|
597 |
+
text_inputs = tokenizer(
|
598 |
+
prompt,
|
599 |
+
padding="max_length",
|
600 |
+
max_length=256,
|
601 |
+
truncation=True,
|
602 |
+
return_tensors="pt",
|
603 |
+
).to('cuda')
|
604 |
+
output = text_encoder(
|
605 |
+
input_ids=text_inputs['input_ids'] ,
|
606 |
+
attention_mask=text_inputs['attention_mask'],
|
607 |
+
position_ids=text_inputs['position_ids'],
|
608 |
+
output_hidden_states=True)
|
609 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
610 |
+
text_proj = output.hidden_states[-1][-1, :, :].clone()
|
611 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
612 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
613 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
614 |
+
prompt_embeds_list.append(prompt_embeds)
|
615 |
+
|
616 |
+
prompt_embeds = prompt_embeds_list[0]
|
617 |
+
|
618 |
+
# get unconditional embeddings for classifier free guidance
|
619 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
620 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
621 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
622 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
623 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
624 |
+
# negative_prompt = negative_prompt or ""
|
625 |
+
uncond_tokens: List[str]
|
626 |
+
if negative_prompt is None:
|
627 |
+
uncond_tokens = [""] * batch_size
|
628 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
629 |
+
raise TypeError(
|
630 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
631 |
+
f" {type(prompt)}."
|
632 |
+
)
|
633 |
+
elif isinstance(negative_prompt, str):
|
634 |
+
uncond_tokens = [negative_prompt]
|
635 |
+
elif batch_size != len(negative_prompt):
|
636 |
+
raise ValueError(
|
637 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
638 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
639 |
+
" the batch size of `prompt`."
|
640 |
+
)
|
641 |
+
else:
|
642 |
+
uncond_tokens = negative_prompt
|
643 |
+
|
644 |
+
negative_prompt_embeds_list = []
|
645 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
646 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
647 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
648 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
649 |
+
|
650 |
+
max_length = prompt_embeds.shape[1]
|
651 |
+
uncond_input = tokenizer(
|
652 |
+
uncond_tokens,
|
653 |
+
padding="max_length",
|
654 |
+
max_length=max_length,
|
655 |
+
truncation=True,
|
656 |
+
return_tensors="pt",
|
657 |
+
).to('cuda')
|
658 |
+
output = text_encoder(
|
659 |
+
input_ids=uncond_input['input_ids'] ,
|
660 |
+
attention_mask=uncond_input['attention_mask'],
|
661 |
+
position_ids=uncond_input['position_ids'],
|
662 |
+
output_hidden_states=True)
|
663 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
664 |
+
negative_text_proj = output.hidden_states[-1][-1, :, :].clone()
|
665 |
+
|
666 |
+
if do_classifier_free_guidance:
|
667 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
668 |
+
seq_len = negative_prompt_embeds.shape[1]
|
669 |
+
|
670 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
671 |
+
|
672 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
673 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
674 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
675 |
+
)
|
676 |
+
|
677 |
+
# For classifier free guidance, we need to do two forward passes.
|
678 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
679 |
+
# to avoid doing two forward passes
|
680 |
+
|
681 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
682 |
+
|
683 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
684 |
+
|
685 |
+
bs_embed = text_proj.shape[0]
|
686 |
+
text_proj = text_proj.repeat(1, num_images_per_prompt).view(
|
687 |
+
bs_embed * num_images_per_prompt, -1
|
688 |
+
)
|
689 |
+
negative_text_proj = negative_text_proj.repeat(1, num_images_per_prompt).view(
|
690 |
+
bs_embed * num_images_per_prompt, -1
|
691 |
+
)
|
692 |
+
|
693 |
+
return prompt_embeds, negative_prompt_embeds, text_proj, negative_text_proj
|
694 |
+
|
695 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
696 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
697 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
698 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
699 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
700 |
+
# and should be between [0, 1]
|
701 |
+
|
702 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
703 |
+
extra_step_kwargs = {}
|
704 |
+
if accepts_eta:
|
705 |
+
extra_step_kwargs["eta"] = eta
|
706 |
+
|
707 |
+
# check if the scheduler accepts generator
|
708 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
709 |
+
if accepts_generator:
|
710 |
+
extra_step_kwargs["generator"] = generator
|
711 |
+
return extra_step_kwargs
|
712 |
+
|
713 |
+
def check_inputs(
|
714 |
+
self,
|
715 |
+
prompt,
|
716 |
+
prompt_2,
|
717 |
+
image,
|
718 |
+
mask_image,
|
719 |
+
height,
|
720 |
+
width,
|
721 |
+
strength,
|
722 |
+
callback_steps,
|
723 |
+
output_type,
|
724 |
+
negative_prompt=None,
|
725 |
+
negative_prompt_2=None,
|
726 |
+
prompt_embeds=None,
|
727 |
+
negative_prompt_embeds=None,
|
728 |
+
ip_adapter_image=None,
|
729 |
+
ip_adapter_image_embeds=None,
|
730 |
+
callback_on_step_end_tensor_inputs=None,
|
731 |
+
padding_mask_crop=None,
|
732 |
+
):
|
733 |
+
if strength < 0 or strength > 1:
|
734 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
735 |
+
|
736 |
+
if height % 8 != 0 or width % 8 != 0:
|
737 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
738 |
+
|
739 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
740 |
+
raise ValueError(
|
741 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
742 |
+
f" {type(callback_steps)}."
|
743 |
+
)
|
744 |
+
|
745 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
746 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
747 |
+
):
|
748 |
+
raise ValueError(
|
749 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
750 |
+
)
|
751 |
+
|
752 |
+
if prompt is not None and prompt_embeds is not None:
|
753 |
+
raise ValueError(
|
754 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
755 |
+
" only forward one of the two."
|
756 |
+
)
|
757 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
758 |
+
raise ValueError(
|
759 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
760 |
+
" only forward one of the two."
|
761 |
+
)
|
762 |
+
elif prompt is None and prompt_embeds is None:
|
763 |
+
raise ValueError(
|
764 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
765 |
+
)
|
766 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
767 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
768 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
769 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
770 |
+
|
771 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
772 |
+
raise ValueError(
|
773 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
774 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
775 |
+
)
|
776 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
777 |
+
raise ValueError(
|
778 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
779 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
780 |
+
)
|
781 |
+
|
782 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
783 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
784 |
+
raise ValueError(
|
785 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
786 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
787 |
+
f" {negative_prompt_embeds.shape}."
|
788 |
+
)
|
789 |
+
if padding_mask_crop is not None:
|
790 |
+
if not isinstance(image, PIL.Image.Image):
|
791 |
+
raise ValueError(
|
792 |
+
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
|
793 |
+
)
|
794 |
+
if not isinstance(mask_image, PIL.Image.Image):
|
795 |
+
raise ValueError(
|
796 |
+
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
|
797 |
+
f" {type(mask_image)}."
|
798 |
+
)
|
799 |
+
if output_type != "pil":
|
800 |
+
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
|
801 |
+
|
802 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
803 |
+
raise ValueError(
|
804 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
805 |
+
)
|
806 |
+
|
807 |
+
if ip_adapter_image_embeds is not None:
|
808 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
809 |
+
raise ValueError(
|
810 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
811 |
+
)
|
812 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
813 |
+
raise ValueError(
|
814 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
815 |
+
)
|
816 |
+
|
817 |
+
def prepare_latents(
|
818 |
+
self,
|
819 |
+
batch_size,
|
820 |
+
num_channels_latents,
|
821 |
+
height,
|
822 |
+
width,
|
823 |
+
dtype,
|
824 |
+
device,
|
825 |
+
generator,
|
826 |
+
latents=None,
|
827 |
+
image=None,
|
828 |
+
timestep=None,
|
829 |
+
is_strength_max=True,
|
830 |
+
add_noise=True,
|
831 |
+
return_noise=False,
|
832 |
+
return_image_latents=False,
|
833 |
+
):
|
834 |
+
shape = (
|
835 |
+
batch_size,
|
836 |
+
num_channels_latents,
|
837 |
+
int(height) // self.vae_scale_factor,
|
838 |
+
int(width) // self.vae_scale_factor,
|
839 |
+
)
|
840 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
841 |
+
raise ValueError(
|
842 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
843 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
844 |
+
)
|
845 |
+
|
846 |
+
if (image is None or timestep is None) and not is_strength_max:
|
847 |
+
raise ValueError(
|
848 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
849 |
+
"However, either the image or the noise timestep has not been provided."
|
850 |
+
)
|
851 |
+
|
852 |
+
if image.shape[1] == 4:
|
853 |
+
image_latents = image.to(device=device, dtype=dtype)
|
854 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
855 |
+
elif return_image_latents or (latents is None and not is_strength_max):
|
856 |
+
image = image.to(device=device, dtype=dtype)
|
857 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
858 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
859 |
+
|
860 |
+
if latents is None and add_noise:
|
861 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
862 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
863 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
864 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
865 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
866 |
+
elif add_noise:
|
867 |
+
noise = latents.to(device)
|
868 |
+
latents = noise * self.scheduler.init_noise_sigma
|
869 |
+
else:
|
870 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
871 |
+
latents = image_latents.to(device)
|
872 |
+
|
873 |
+
outputs = (latents,)
|
874 |
+
|
875 |
+
if return_noise:
|
876 |
+
outputs += (noise,)
|
877 |
+
|
878 |
+
if return_image_latents:
|
879 |
+
outputs += (image_latents,)
|
880 |
+
|
881 |
+
return outputs
|
882 |
+
|
883 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
884 |
+
dtype = image.dtype
|
885 |
+
if self.vae.config.force_upcast:
|
886 |
+
image = image.float()
|
887 |
+
self.vae.to(dtype=torch.float32)
|
888 |
+
|
889 |
+
if isinstance(generator, list):
|
890 |
+
image_latents = [
|
891 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
892 |
+
for i in range(image.shape[0])
|
893 |
+
]
|
894 |
+
image_latents = torch.cat(image_latents, dim=0)
|
895 |
+
else:
|
896 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
897 |
+
|
898 |
+
if self.vae.config.force_upcast:
|
899 |
+
self.vae.to(dtype)
|
900 |
+
|
901 |
+
image_latents = image_latents.to(dtype)
|
902 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
903 |
+
|
904 |
+
return image_latents
|
905 |
+
|
906 |
+
def prepare_mask_latents(
|
907 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
908 |
+
):
|
909 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
910 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
911 |
+
# and half precision
|
912 |
+
mask = torch.nn.functional.interpolate(
|
913 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
914 |
+
)
|
915 |
+
mask = mask.to(device=device, dtype=dtype)
|
916 |
+
|
917 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
918 |
+
if mask.shape[0] < batch_size:
|
919 |
+
if not batch_size % mask.shape[0] == 0:
|
920 |
+
raise ValueError(
|
921 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
922 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
923 |
+
" of masks that you pass is divisible by the total requested batch size."
|
924 |
+
)
|
925 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
926 |
+
|
927 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
928 |
+
|
929 |
+
if masked_image is not None and masked_image.shape[1] == 4:
|
930 |
+
masked_image_latents = masked_image
|
931 |
+
else:
|
932 |
+
masked_image_latents = None
|
933 |
+
|
934 |
+
if masked_image is not None:
|
935 |
+
if masked_image_latents is None:
|
936 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
937 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
938 |
+
|
939 |
+
if masked_image_latents.shape[0] < batch_size:
|
940 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
941 |
+
raise ValueError(
|
942 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
943 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
944 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
945 |
+
)
|
946 |
+
masked_image_latents = masked_image_latents.repeat(
|
947 |
+
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
948 |
+
)
|
949 |
+
|
950 |
+
masked_image_latents = (
|
951 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
952 |
+
)
|
953 |
+
|
954 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
955 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
956 |
+
|
957 |
+
return mask, masked_image_latents
|
958 |
+
|
959 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
|
960 |
+
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
961 |
+
# get the original timestep using init_timestep
|
962 |
+
if denoising_start is None:
|
963 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
964 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
965 |
+
else:
|
966 |
+
t_start = 0
|
967 |
+
|
968 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
969 |
+
|
970 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
971 |
+
# that is, strength is determined by the denoising_start instead.
|
972 |
+
if denoising_start is not None:
|
973 |
+
discrete_timestep_cutoff = int(
|
974 |
+
round(
|
975 |
+
self.scheduler.config.num_train_timesteps
|
976 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
977 |
+
)
|
978 |
+
)
|
979 |
+
|
980 |
+
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
981 |
+
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
982 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
983 |
+
# because `num_inference_steps` might be even given that every timestep
|
984 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
985 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
986 |
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
987 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
988 |
+
num_inference_steps = num_inference_steps + 1
|
989 |
+
|
990 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
991 |
+
timesteps = timesteps[-num_inference_steps:]
|
992 |
+
return timesteps, num_inference_steps
|
993 |
+
|
994 |
+
return timesteps, num_inference_steps - t_start
|
995 |
+
|
996 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
997 |
+
def _get_add_time_ids(
|
998 |
+
self,
|
999 |
+
original_size,
|
1000 |
+
crops_coords_top_left,
|
1001 |
+
target_size,
|
1002 |
+
aesthetic_score,
|
1003 |
+
negative_aesthetic_score,
|
1004 |
+
negative_original_size,
|
1005 |
+
negative_crops_coords_top_left,
|
1006 |
+
negative_target_size,
|
1007 |
+
dtype,
|
1008 |
+
text_encoder_projection_dim=None,
|
1009 |
+
):
|
1010 |
+
if self.config.requires_aesthetics_score:
|
1011 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
1012 |
+
add_neg_time_ids = list(
|
1013 |
+
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
1014 |
+
)
|
1015 |
+
else:
|
1016 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
1017 |
+
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
1018 |
+
|
1019 |
+
passed_add_embed_dim = (
|
1020 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
1021 |
+
)
|
1022 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
1023 |
+
|
1024 |
+
if (
|
1025 |
+
expected_add_embed_dim > passed_add_embed_dim
|
1026 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1027 |
+
):
|
1028 |
+
raise ValueError(
|
1029 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
1030 |
+
)
|
1031 |
+
elif (
|
1032 |
+
expected_add_embed_dim < passed_add_embed_dim
|
1033 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1034 |
+
):
|
1035 |
+
raise ValueError(
|
1036 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
1037 |
+
)
|
1038 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
1039 |
+
raise ValueError(
|
1040 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
1044 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
1045 |
+
|
1046 |
+
return add_time_ids, add_neg_time_ids
|
1047 |
+
|
1048 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
1049 |
+
def upcast_vae(self):
|
1050 |
+
dtype = self.vae.dtype
|
1051 |
+
self.vae.to(dtype=torch.float32)
|
1052 |
+
use_torch_2_0_or_xformers = isinstance(
|
1053 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
1054 |
+
(
|
1055 |
+
AttnProcessor2_0,
|
1056 |
+
XFormersAttnProcessor,
|
1057 |
+
LoRAXFormersAttnProcessor,
|
1058 |
+
LoRAAttnProcessor2_0,
|
1059 |
+
),
|
1060 |
+
)
|
1061 |
+
# if xformers or torch_2_0 is used attention block does not need
|
1062 |
+
# to be in float32 which can save lots of memory
|
1063 |
+
if use_torch_2_0_or_xformers:
|
1064 |
+
self.vae.post_quant_conv.to(dtype)
|
1065 |
+
self.vae.decoder.conv_in.to(dtype)
|
1066 |
+
self.vae.decoder.mid_block.to(dtype)
|
1067 |
+
|
1068 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
1069 |
+
def get_guidance_scale_embedding(
|
1070 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
1071 |
+
) -> torch.Tensor:
|
1072 |
+
"""
|
1073 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
1074 |
+
|
1075 |
+
Args:
|
1076 |
+
w (`torch.Tensor`):
|
1077 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
1078 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
1079 |
+
Dimension of the embeddings to generate.
|
1080 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
1081 |
+
Data type of the generated embeddings.
|
1082 |
+
|
1083 |
+
Returns:
|
1084 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
1085 |
+
"""
|
1086 |
+
assert len(w.shape) == 1
|
1087 |
+
w = w * 1000.0
|
1088 |
+
|
1089 |
+
half_dim = embedding_dim // 2
|
1090 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
1091 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
1092 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
1093 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
1094 |
+
if embedding_dim % 2 == 1: # zero pad
|
1095 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
1096 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
1097 |
+
return emb
|
1098 |
+
|
1099 |
+
@property
|
1100 |
+
def guidance_scale(self):
|
1101 |
+
return self._guidance_scale
|
1102 |
+
|
1103 |
+
@property
|
1104 |
+
def guidance_rescale(self):
|
1105 |
+
return self._guidance_rescale
|
1106 |
+
|
1107 |
+
@property
|
1108 |
+
def clip_skip(self):
|
1109 |
+
return self._clip_skip
|
1110 |
+
|
1111 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1112 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1113 |
+
# corresponds to doing no classifier free guidance.
|
1114 |
+
@property
|
1115 |
+
def do_classifier_free_guidance(self):
|
1116 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
1117 |
+
|
1118 |
+
@property
|
1119 |
+
def cross_attention_kwargs(self):
|
1120 |
+
return self._cross_attention_kwargs
|
1121 |
+
|
1122 |
+
@property
|
1123 |
+
def denoising_end(self):
|
1124 |
+
return self._denoising_end
|
1125 |
+
|
1126 |
+
@property
|
1127 |
+
def denoising_start(self):
|
1128 |
+
return self._denoising_start
|
1129 |
+
|
1130 |
+
@property
|
1131 |
+
def num_timesteps(self):
|
1132 |
+
return self._num_timesteps
|
1133 |
+
|
1134 |
+
@property
|
1135 |
+
def interrupt(self):
|
1136 |
+
return self._interrupt
|
1137 |
+
|
1138 |
+
@torch.no_grad()
|
1139 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1140 |
+
def __call__(
|
1141 |
+
self,
|
1142 |
+
prompt: Union[str, List[str]] = None,
|
1143 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1144 |
+
image: PipelineImageInput = None,
|
1145 |
+
mask_image: PipelineImageInput = None,
|
1146 |
+
masked_image_latents: torch.Tensor = None,
|
1147 |
+
height: Optional[int] = None,
|
1148 |
+
width: Optional[int] = None,
|
1149 |
+
padding_mask_crop: Optional[int] = None,
|
1150 |
+
strength: float = 0.9999,
|
1151 |
+
num_inference_steps: int = 50,
|
1152 |
+
timesteps: List[int] = None,
|
1153 |
+
sigmas: List[float] = None,
|
1154 |
+
denoising_start: Optional[float] = None,
|
1155 |
+
denoising_end: Optional[float] = None,
|
1156 |
+
guidance_scale: float = 7.5,
|
1157 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1158 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1159 |
+
num_images_per_prompt: Optional[int] = 1,
|
1160 |
+
eta: float = 0.0,
|
1161 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1162 |
+
latents: Optional[torch.Tensor] = None,
|
1163 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1164 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1165 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1166 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1167 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1168 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1169 |
+
output_type: Optional[str] = "pil",
|
1170 |
+
return_dict: bool = True,
|
1171 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1172 |
+
guidance_rescale: float = 0.0,
|
1173 |
+
original_size: Tuple[int, int] = None,
|
1174 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1175 |
+
target_size: Tuple[int, int] = None,
|
1176 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
1177 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1178 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
1179 |
+
aesthetic_score: float = 6.0,
|
1180 |
+
negative_aesthetic_score: float = 2.5,
|
1181 |
+
clip_skip: Optional[int] = None,
|
1182 |
+
callback_on_step_end: Optional[
|
1183 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
1184 |
+
] = None,
|
1185 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1186 |
+
**kwargs,
|
1187 |
+
):
|
1188 |
+
r"""
|
1189 |
+
Function invoked when calling the pipeline for generation.
|
1190 |
+
|
1191 |
+
Args:
|
1192 |
+
prompt (`str` or `List[str]`, *optional*):
|
1193 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1194 |
+
instead.
|
1195 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
1196 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1197 |
+
used in both text-encoders
|
1198 |
+
image (`PIL.Image.Image`):
|
1199 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
1200 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
1201 |
+
mask_image (`PIL.Image.Image`):
|
1202 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
1203 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
1204 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
1205 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
1206 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1207 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
1208 |
+
Anything below 512 pixels won't work well for
|
1209 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1210 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1211 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1212 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
1213 |
+
Anything below 512 pixels won't work well for
|
1214 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1215 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1216 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1217 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1218 |
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
1219 |
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
1220 |
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
1221 |
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
1222 |
+
the image is large and contain information irrelevant for inpainting, such as background.
|
1223 |
+
strength (`float`, *optional*, defaults to 0.9999):
|
1224 |
+
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
1225 |
+
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
1226 |
+
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
1227 |
+
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
1228 |
+
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
1229 |
+
portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
|
1230 |
+
integer, the value of `strength` will be ignored.
|
1231 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1232 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1233 |
+
expense of slower inference.
|
1234 |
+
timesteps (`List[int]`, *optional*):
|
1235 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1236 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1237 |
+
passed will be used. Must be in descending order.
|
1238 |
+
sigmas (`List[float]`, *optional*):
|
1239 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1240 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1241 |
+
will be used.
|
1242 |
+
denoising_start (`float`, *optional*):
|
1243 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1244 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
1245 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
1246 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
1247 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
1248 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1249 |
+
denoising_end (`float`, *optional*):
|
1250 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1251 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1252 |
+
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
1253 |
+
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
1254 |
+
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
1255 |
+
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1256 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1257 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1258 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1259 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1260 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1261 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1262 |
+
usually at the expense of lower image quality.
|
1263 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1264 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1265 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1266 |
+
less than `1`).
|
1267 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1268 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1269 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1270 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1271 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1272 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1273 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1274 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1275 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1276 |
+
argument.
|
1277 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1278 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1279 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1280 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1281 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1282 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1283 |
+
input argument.
|
1284 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1285 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1286 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1287 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1288 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1289 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1290 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1291 |
+
The number of images to generate per prompt.
|
1292 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1293 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1294 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1295 |
+
generator (`torch.Generator`, *optional*):
|
1296 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1297 |
+
to make generation deterministic.
|
1298 |
+
latents (`torch.Tensor`, *optional*):
|
1299 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1300 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1301 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1302 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1303 |
+
The output format of the generate image. Choose between
|
1304 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1305 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1306 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1307 |
+
plain tuple.
|
1308 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1309 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1310 |
+
`self.processor` in
|
1311 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1312 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1313 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1314 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1315 |
+
explained in section 2.2 of
|
1316 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1317 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1318 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1319 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1320 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1321 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1322 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1323 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1324 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1325 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1326 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1327 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1328 |
+
micro-conditioning as explained in section 2.2 of
|
1329 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1330 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1331 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1332 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1333 |
+
micro-conditioning as explained in section 2.2 of
|
1334 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1335 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1336 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1337 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1338 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1339 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1340 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1341 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
1342 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
1343 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1344 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1345 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
1346 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1347 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
1348 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
1349 |
+
clip_skip (`int`, *optional*):
|
1350 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1351 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1352 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1353 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1354 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1355 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1356 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1357 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1358 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1359 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1360 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1361 |
+
|
1362 |
+
Examples:
|
1363 |
+
|
1364 |
+
Returns:
|
1365 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1366 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1367 |
+
`tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
|
1368 |
+
"""
|
1369 |
+
|
1370 |
+
callback = kwargs.pop("callback", None)
|
1371 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1372 |
+
|
1373 |
+
if callback is not None:
|
1374 |
+
deprecate(
|
1375 |
+
"callback",
|
1376 |
+
"1.0.0",
|
1377 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1378 |
+
)
|
1379 |
+
if callback_steps is not None:
|
1380 |
+
deprecate(
|
1381 |
+
"callback_steps",
|
1382 |
+
"1.0.0",
|
1383 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1387 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1388 |
+
|
1389 |
+
# 0. Default height and width to unet
|
1390 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1391 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1392 |
+
|
1393 |
+
# 1. Check inputs
|
1394 |
+
self.check_inputs(
|
1395 |
+
prompt,
|
1396 |
+
prompt_2,
|
1397 |
+
image,
|
1398 |
+
mask_image,
|
1399 |
+
height,
|
1400 |
+
width,
|
1401 |
+
strength,
|
1402 |
+
callback_steps,
|
1403 |
+
output_type,
|
1404 |
+
negative_prompt,
|
1405 |
+
negative_prompt_2,
|
1406 |
+
prompt_embeds,
|
1407 |
+
negative_prompt_embeds,
|
1408 |
+
ip_adapter_image,
|
1409 |
+
ip_adapter_image_embeds,
|
1410 |
+
callback_on_step_end_tensor_inputs,
|
1411 |
+
padding_mask_crop,
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
self._guidance_scale = guidance_scale
|
1415 |
+
self._guidance_rescale = guidance_rescale
|
1416 |
+
self._clip_skip = clip_skip
|
1417 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1418 |
+
self._denoising_end = denoising_end
|
1419 |
+
self._denoising_start = denoising_start
|
1420 |
+
self._interrupt = False
|
1421 |
+
|
1422 |
+
# 2. Define call parameters
|
1423 |
+
if prompt is not None and isinstance(prompt, str):
|
1424 |
+
batch_size = 1
|
1425 |
+
elif prompt is not None and isinstance(prompt, list):
|
1426 |
+
batch_size = len(prompt)
|
1427 |
+
else:
|
1428 |
+
batch_size = prompt_embeds.shape[0]
|
1429 |
+
|
1430 |
+
device = self._execution_device
|
1431 |
+
|
1432 |
+
# 3. Encode input prompt
|
1433 |
+
text_encoder_lora_scale = (
|
1434 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1435 |
+
)
|
1436 |
+
|
1437 |
+
(
|
1438 |
+
prompt_embeds,
|
1439 |
+
negative_prompt_embeds,
|
1440 |
+
pooled_prompt_embeds,
|
1441 |
+
negative_pooled_prompt_embeds,
|
1442 |
+
) = self.encode_prompt(
|
1443 |
+
prompt=prompt,
|
1444 |
+
device=device,
|
1445 |
+
num_images_per_prompt=num_images_per_prompt,
|
1446 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1447 |
+
negative_prompt=negative_prompt,
|
1448 |
+
prompt_embeds=prompt_embeds,
|
1449 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1450 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1451 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1452 |
+
lora_scale=text_encoder_lora_scale,
|
1453 |
+
)
|
1454 |
+
|
1455 |
+
# 4. set timesteps
|
1456 |
+
def denoising_value_valid(dnv):
|
1457 |
+
return isinstance(dnv, float) and 0 < dnv < 1
|
1458 |
+
|
1459 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1460 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1461 |
+
)
|
1462 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1463 |
+
num_inference_steps,
|
1464 |
+
strength,
|
1465 |
+
device,
|
1466 |
+
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
1467 |
+
)
|
1468 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
1469 |
+
if num_inference_steps < 1:
|
1470 |
+
raise ValueError(
|
1471 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
1472 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
1473 |
+
)
|
1474 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1475 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1476 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1477 |
+
is_strength_max = strength == 1.0
|
1478 |
+
|
1479 |
+
# 5. Preprocess mask and image
|
1480 |
+
if padding_mask_crop is not None:
|
1481 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
1482 |
+
resize_mode = "fill"
|
1483 |
+
else:
|
1484 |
+
crops_coords = None
|
1485 |
+
resize_mode = "default"
|
1486 |
+
|
1487 |
+
original_image = image
|
1488 |
+
init_image = self.image_processor.preprocess(
|
1489 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
1490 |
+
)
|
1491 |
+
init_image = init_image.to(dtype=torch.float32)
|
1492 |
+
|
1493 |
+
mask = self.mask_processor.preprocess(
|
1494 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1495 |
+
)
|
1496 |
+
|
1497 |
+
if masked_image_latents is not None:
|
1498 |
+
masked_image = masked_image_latents
|
1499 |
+
elif init_image.shape[1] == 4:
|
1500 |
+
# if images are in latent space, we can't mask it
|
1501 |
+
masked_image = None
|
1502 |
+
else:
|
1503 |
+
masked_image = init_image * (mask < 0.5)
|
1504 |
+
|
1505 |
+
# 6. Prepare latent variables
|
1506 |
+
num_channels_latents = self.vae.config.latent_channels
|
1507 |
+
num_channels_unet = self.unet.config.in_channels
|
1508 |
+
return_image_latents = num_channels_unet == 4
|
1509 |
+
|
1510 |
+
add_noise = True if self.denoising_start is None else False
|
1511 |
+
latents_outputs = self.prepare_latents(
|
1512 |
+
batch_size * num_images_per_prompt,
|
1513 |
+
num_channels_latents,
|
1514 |
+
height,
|
1515 |
+
width,
|
1516 |
+
prompt_embeds.dtype,
|
1517 |
+
device,
|
1518 |
+
generator,
|
1519 |
+
latents,
|
1520 |
+
image=init_image,
|
1521 |
+
timestep=latent_timestep,
|
1522 |
+
is_strength_max=is_strength_max,
|
1523 |
+
add_noise=add_noise,
|
1524 |
+
return_noise=True,
|
1525 |
+
return_image_latents=return_image_latents,
|
1526 |
+
)
|
1527 |
+
|
1528 |
+
if return_image_latents:
|
1529 |
+
latents, noise, image_latents = latents_outputs
|
1530 |
+
else:
|
1531 |
+
latents, noise = latents_outputs
|
1532 |
+
|
1533 |
+
# 7. Prepare mask latent variables
|
1534 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1535 |
+
mask,
|
1536 |
+
masked_image,
|
1537 |
+
batch_size * num_images_per_prompt,
|
1538 |
+
height,
|
1539 |
+
width,
|
1540 |
+
prompt_embeds.dtype,
|
1541 |
+
device,
|
1542 |
+
generator,
|
1543 |
+
self.do_classifier_free_guidance,
|
1544 |
+
)
|
1545 |
+
|
1546 |
+
# 8. Check that sizes of mask, masked image and latents match
|
1547 |
+
if num_channels_unet == 9:
|
1548 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1549 |
+
num_channels_mask = mask.shape[1]
|
1550 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1551 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
1552 |
+
raise ValueError(
|
1553 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1554 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1555 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1556 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1557 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
1558 |
+
)
|
1559 |
+
elif num_channels_unet != 4:
|
1560 |
+
raise ValueError(
|
1561 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1562 |
+
)
|
1563 |
+
# 8.1 Prepare extra step kwargs.
|
1564 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1565 |
+
|
1566 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1567 |
+
height, width = latents.shape[-2:]
|
1568 |
+
height = height * self.vae_scale_factor
|
1569 |
+
width = width * self.vae_scale_factor
|
1570 |
+
|
1571 |
+
original_size = original_size or (height, width)
|
1572 |
+
target_size = target_size or (height, width)
|
1573 |
+
|
1574 |
+
# 10. Prepare added time ids & embeddings
|
1575 |
+
if negative_original_size is None:
|
1576 |
+
negative_original_size = original_size
|
1577 |
+
if negative_target_size is None:
|
1578 |
+
negative_target_size = target_size
|
1579 |
+
|
1580 |
+
add_text_embeds = pooled_prompt_embeds
|
1581 |
+
if self.text_encoder_2 is None:
|
1582 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1583 |
+
else:
|
1584 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1585 |
+
|
1586 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
1587 |
+
original_size,
|
1588 |
+
crops_coords_top_left,
|
1589 |
+
target_size,
|
1590 |
+
aesthetic_score,
|
1591 |
+
negative_aesthetic_score,
|
1592 |
+
negative_original_size,
|
1593 |
+
negative_crops_coords_top_left,
|
1594 |
+
negative_target_size,
|
1595 |
+
dtype=prompt_embeds.dtype,
|
1596 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1597 |
+
)
|
1598 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1599 |
+
|
1600 |
+
if self.do_classifier_free_guidance:
|
1601 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1602 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1603 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1604 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
1605 |
+
|
1606 |
+
prompt_embeds = prompt_embeds.to(device)
|
1607 |
+
add_text_embeds = add_text_embeds.to(device)
|
1608 |
+
add_time_ids = add_time_ids.to(device)
|
1609 |
+
|
1610 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1611 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1612 |
+
ip_adapter_image,
|
1613 |
+
ip_adapter_image_embeds,
|
1614 |
+
device,
|
1615 |
+
batch_size * num_images_per_prompt,
|
1616 |
+
self.do_classifier_free_guidance,
|
1617 |
+
)
|
1618 |
+
|
1619 |
+
|
1620 |
+
# 11. Denoising loop
|
1621 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1622 |
+
|
1623 |
+
if (
|
1624 |
+
self.denoising_end is not None
|
1625 |
+
and self.denoising_start is not None
|
1626 |
+
and denoising_value_valid(self.denoising_end)
|
1627 |
+
and denoising_value_valid(self.denoising_start)
|
1628 |
+
and self.denoising_start >= self.denoising_end
|
1629 |
+
):
|
1630 |
+
raise ValueError(
|
1631 |
+
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
|
1632 |
+
+ f" {self.denoising_end} when using type float."
|
1633 |
+
)
|
1634 |
+
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
|
1635 |
+
discrete_timestep_cutoff = int(
|
1636 |
+
round(
|
1637 |
+
self.scheduler.config.num_train_timesteps
|
1638 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1639 |
+
)
|
1640 |
+
)
|
1641 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1642 |
+
timesteps = timesteps[:num_inference_steps]
|
1643 |
+
|
1644 |
+
# 11.1 Optionally get Guidance Scale Embedding
|
1645 |
+
timestep_cond = None
|
1646 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1647 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1648 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1649 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1650 |
+
).to(device=device, dtype=latents.dtype)
|
1651 |
+
|
1652 |
+
self._num_timesteps = len(timesteps)
|
1653 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1654 |
+
for i, t in enumerate(timesteps):
|
1655 |
+
if self.interrupt:
|
1656 |
+
continue
|
1657 |
+
# expand the latents if we are doing classifier free guidance
|
1658 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1659 |
+
|
1660 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
1661 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1662 |
+
|
1663 |
+
if num_channels_unet == 9:
|
1664 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1665 |
+
|
1666 |
+
# predict the noise residual
|
1667 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1668 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1669 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1670 |
+
noise_pred = self.unet(
|
1671 |
+
latent_model_input,
|
1672 |
+
t,
|
1673 |
+
encoder_hidden_states=prompt_embeds,
|
1674 |
+
timestep_cond=timestep_cond,
|
1675 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1676 |
+
added_cond_kwargs=added_cond_kwargs,
|
1677 |
+
return_dict=False,
|
1678 |
+
)[0]
|
1679 |
+
|
1680 |
+
# perform guidance
|
1681 |
+
if self.do_classifier_free_guidance:
|
1682 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1683 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1684 |
+
|
1685 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1686 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1687 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1688 |
+
|
1689 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1690 |
+
latents_dtype = latents.dtype
|
1691 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1692 |
+
if latents.dtype != latents_dtype:
|
1693 |
+
if torch.backends.mps.is_available():
|
1694 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1695 |
+
latents = latents.to(latents_dtype)
|
1696 |
+
|
1697 |
+
if num_channels_unet == 4:
|
1698 |
+
init_latents_proper = image_latents
|
1699 |
+
if self.do_classifier_free_guidance:
|
1700 |
+
init_mask, _ = mask.chunk(2)
|
1701 |
+
else:
|
1702 |
+
init_mask = mask
|
1703 |
+
|
1704 |
+
if i < len(timesteps) - 1:
|
1705 |
+
noise_timestep = timesteps[i + 1]
|
1706 |
+
init_latents_proper = self.scheduler.add_noise(
|
1707 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1708 |
+
)
|
1709 |
+
|
1710 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1711 |
+
|
1712 |
+
if callback_on_step_end is not None:
|
1713 |
+
callback_kwargs = {}
|
1714 |
+
for k in callback_on_step_end_tensor_inputs:
|
1715 |
+
callback_kwargs[k] = locals()[k]
|
1716 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1717 |
+
|
1718 |
+
latents = callback_outputs.pop("latents", latents)
|
1719 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1720 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1721 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1722 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1723 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1724 |
+
)
|
1725 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1726 |
+
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
1727 |
+
mask = callback_outputs.pop("mask", mask)
|
1728 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
1729 |
+
|
1730 |
+
# call the callback, if provided
|
1731 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1732 |
+
progress_bar.update()
|
1733 |
+
if callback is not None and i % callback_steps == 0:
|
1734 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1735 |
+
callback(step_idx, t, latents)
|
1736 |
+
|
1737 |
+
if XLA_AVAILABLE:
|
1738 |
+
xm.mark_step()
|
1739 |
+
|
1740 |
+
if not output_type == "latent":
|
1741 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1742 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1743 |
+
|
1744 |
+
if needs_upcasting:
|
1745 |
+
self.upcast_vae()
|
1746 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1747 |
+
elif latents.dtype != self.vae.dtype:
|
1748 |
+
if torch.backends.mps.is_available():
|
1749 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1750 |
+
self.vae = self.vae.to(latents.dtype)
|
1751 |
+
|
1752 |
+
# unscale/denormalize the latents
|
1753 |
+
# denormalize with the mean and std if available and not None
|
1754 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1755 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1756 |
+
if has_latents_mean and has_latents_std:
|
1757 |
+
latents_mean = (
|
1758 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1759 |
+
)
|
1760 |
+
latents_std = (
|
1761 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1762 |
+
)
|
1763 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1764 |
+
else:
|
1765 |
+
latents = latents / self.vae.config.scaling_factor
|
1766 |
+
|
1767 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1768 |
+
|
1769 |
+
# cast back to fp16 if needed
|
1770 |
+
if needs_upcasting:
|
1771 |
+
self.vae.to(dtype=torch.float16)
|
1772 |
+
else:
|
1773 |
+
return StableDiffusionXLPipelineOutput(images=latents)
|
1774 |
+
|
1775 |
+
# apply watermark if available
|
1776 |
+
if self.watermark is not None:
|
1777 |
+
image = self.watermark.apply_watermark(image)
|
1778 |
+
|
1779 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1780 |
+
|
1781 |
+
if padding_mask_crop is not None:
|
1782 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
1783 |
+
|
1784 |
+
# Offload all models
|
1785 |
+
self.maybe_free_model_hooks()
|
1786 |
+
|
1787 |
+
if not return_dict:
|
1788 |
+
return (image,)
|
1789 |
+
|
1790 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.py
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import sys
|
15 |
+
import os
|
16 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
17 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
18 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
19 |
+
import inspect
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
21 |
+
import torch
|
22 |
+
from transformers import (
|
23 |
+
CLIPImageProcessor,
|
24 |
+
CLIPTextModel,
|
25 |
+
CLIPTextModelWithProjection,
|
26 |
+
CLIPTokenizer,
|
27 |
+
CLIPVisionModelWithProjection,
|
28 |
+
)
|
29 |
+
from transformers import XLMRobertaModel, ChineseCLIPTextModel
|
30 |
+
|
31 |
+
from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
|
32 |
+
from diffusers.loaders import (
|
33 |
+
FromSingleFileMixin,
|
34 |
+
IPAdapterMixin,
|
35 |
+
LoraLoaderMixin,
|
36 |
+
TextualInversionLoaderMixin
|
37 |
+
)
|
38 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel,ImageProjection
|
39 |
+
from diffusers.models.attention_processor import (
|
40 |
+
AttnProcessor2_0,
|
41 |
+
LoRAAttnProcessor2_0,
|
42 |
+
LoRAXFormersAttnProcessor,
|
43 |
+
XFormersAttnProcessor,
|
44 |
+
)
|
45 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
46 |
+
from diffusers.utils import (
|
47 |
+
is_accelerate_available,
|
48 |
+
is_accelerate_version,
|
49 |
+
logging,
|
50 |
+
replace_example_docstring,
|
51 |
+
)
|
52 |
+
try:
|
53 |
+
from diffusers.utils import randn_tensor
|
54 |
+
except:
|
55 |
+
from diffusers.utils.torch_utils import randn_tensor
|
56 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
57 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
62 |
+
|
63 |
+
EXAMPLE_DOC_STRING = """
|
64 |
+
Examples:
|
65 |
+
```py
|
66 |
+
>>> import torch
|
67 |
+
>>> from diffusers import StableDiffusionXLPipeline
|
68 |
+
|
69 |
+
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
|
70 |
+
... "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
|
71 |
+
... )
|
72 |
+
>>> pipe = pipe.to("cuda")
|
73 |
+
|
74 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
75 |
+
>>> image = pipe(prompt).images[0]
|
76 |
+
```
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
81 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
82 |
+
"""
|
83 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
84 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
85 |
+
"""
|
86 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
87 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
88 |
+
# rescale the results from guidance (fixes overexposure)
|
89 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
90 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
91 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
92 |
+
return noise_cfg
|
93 |
+
|
94 |
+
|
95 |
+
class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, IPAdapterMixin,):
|
96 |
+
r"""
|
97 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
98 |
+
|
99 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
100 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
101 |
+
|
102 |
+
In addition the pipeline inherits the following loading methods:
|
103 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
104 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
|
105 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
106 |
+
|
107 |
+
as well as the following saving methods:
|
108 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
|
109 |
+
|
110 |
+
Args:
|
111 |
+
vae ([`AutoencoderKL`]):
|
112 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
113 |
+
text_encoder ([`CLIPTextModel`]):
|
114 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
115 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
116 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
117 |
+
|
118 |
+
tokenizer (`CLIPTokenizer`):
|
119 |
+
Tokenizer of class
|
120 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
121 |
+
|
122 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
123 |
+
scheduler ([`SchedulerMixin`]):
|
124 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
125 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
126 |
+
"""
|
127 |
+
|
128 |
+
def __init__(
|
129 |
+
self,
|
130 |
+
vae: AutoencoderKL,
|
131 |
+
text_encoder: ChatGLMModel,
|
132 |
+
tokenizer: ChatGLMTokenizer,
|
133 |
+
unet: UNet2DConditionModel,
|
134 |
+
scheduler: KarrasDiffusionSchedulers,
|
135 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
136 |
+
feature_extractor: CLIPImageProcessor = None,
|
137 |
+
force_zeros_for_empty_prompt: bool = True,
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
|
141 |
+
self.register_modules(
|
142 |
+
vae=vae,
|
143 |
+
text_encoder=text_encoder,
|
144 |
+
tokenizer=tokenizer,
|
145 |
+
unet=unet,
|
146 |
+
scheduler=scheduler,
|
147 |
+
image_encoder=image_encoder,
|
148 |
+
feature_extractor=feature_extractor,
|
149 |
+
)
|
150 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
151 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
152 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
153 |
+
self.default_sample_size = self.unet.config.sample_size
|
154 |
+
|
155 |
+
# self.watermark = StableDiffusionXLWatermarker()
|
156 |
+
|
157 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
158 |
+
def enable_vae_slicing(self):
|
159 |
+
r"""
|
160 |
+
Enable sliced VAE decoding.
|
161 |
+
|
162 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
163 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
164 |
+
"""
|
165 |
+
self.vae.enable_slicing()
|
166 |
+
|
167 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
168 |
+
def disable_vae_slicing(self):
|
169 |
+
r"""
|
170 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
171 |
+
computing decoding in one step.
|
172 |
+
"""
|
173 |
+
self.vae.disable_slicing()
|
174 |
+
|
175 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
176 |
+
def enable_vae_tiling(self):
|
177 |
+
r"""
|
178 |
+
Enable tiled VAE decoding.
|
179 |
+
|
180 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
181 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
182 |
+
"""
|
183 |
+
self.vae.enable_tiling()
|
184 |
+
|
185 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
186 |
+
def disable_vae_tiling(self):
|
187 |
+
r"""
|
188 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
189 |
+
computing decoding in one step.
|
190 |
+
"""
|
191 |
+
self.vae.disable_tiling()
|
192 |
+
|
193 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
194 |
+
r"""
|
195 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
196 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
197 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
198 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
199 |
+
`enable_model_cpu_offload`, but performance is lower.
|
200 |
+
"""
|
201 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
202 |
+
from accelerate import cpu_offload
|
203 |
+
else:
|
204 |
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
205 |
+
|
206 |
+
device = torch.device(f"cuda:{gpu_id}")
|
207 |
+
|
208 |
+
if self.device.type != "cpu":
|
209 |
+
self.to("cpu", silence_dtype_warnings=True)
|
210 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
211 |
+
|
212 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
213 |
+
cpu_offload(cpu_offloaded_model, device)
|
214 |
+
|
215 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
216 |
+
r"""
|
217 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
218 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
219 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
220 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
221 |
+
"""
|
222 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
223 |
+
from accelerate import cpu_offload_with_hook
|
224 |
+
else:
|
225 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
226 |
+
|
227 |
+
device = torch.device(f"cuda:{gpu_id}")
|
228 |
+
|
229 |
+
if self.device.type != "cpu":
|
230 |
+
self.to("cpu", silence_dtype_warnings=True)
|
231 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
232 |
+
|
233 |
+
model_sequence = (
|
234 |
+
[self.text_encoder, self.image_encoder]
|
235 |
+
)
|
236 |
+
model_sequence.extend([self.unet, self.vae])
|
237 |
+
|
238 |
+
hook = None
|
239 |
+
for cpu_offloaded_model in model_sequence:
|
240 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
241 |
+
|
242 |
+
# We'll offload the last model manually.
|
243 |
+
self.final_offload_hook = hook
|
244 |
+
|
245 |
+
@property
|
246 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
247 |
+
def _execution_device(self):
|
248 |
+
r"""
|
249 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
250 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
251 |
+
hooks.
|
252 |
+
"""
|
253 |
+
if not hasattr(self.unet, "_hf_hook"):
|
254 |
+
return self.device
|
255 |
+
for module in self.unet.modules():
|
256 |
+
if (
|
257 |
+
hasattr(module, "_hf_hook")
|
258 |
+
and hasattr(module._hf_hook, "execution_device")
|
259 |
+
and module._hf_hook.execution_device is not None
|
260 |
+
):
|
261 |
+
return torch.device(module._hf_hook.execution_device)
|
262 |
+
return self.device
|
263 |
+
|
264 |
+
def encode_prompt(
|
265 |
+
self,
|
266 |
+
prompt,
|
267 |
+
device: Optional[torch.device] = None,
|
268 |
+
num_images_per_prompt: int = 1,
|
269 |
+
do_classifier_free_guidance: bool = True,
|
270 |
+
negative_prompt=None,
|
271 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
272 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
273 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
274 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
275 |
+
lora_scale: Optional[float] = None,
|
276 |
+
):
|
277 |
+
r"""
|
278 |
+
Encodes the prompt into text encoder hidden states.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
prompt (`str` or `List[str]`, *optional*):
|
282 |
+
prompt to be encoded
|
283 |
+
device: (`torch.device`):
|
284 |
+
torch device
|
285 |
+
num_images_per_prompt (`int`):
|
286 |
+
number of images that should be generated per prompt
|
287 |
+
do_classifier_free_guidance (`bool`):
|
288 |
+
whether to use classifier free guidance or not
|
289 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
290 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
291 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
292 |
+
less than `1`).
|
293 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
294 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
295 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
296 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
297 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
298 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
299 |
+
argument.
|
300 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
301 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
302 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
303 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
304 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
305 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
306 |
+
input argument.
|
307 |
+
lora_scale (`float`, *optional*):
|
308 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
309 |
+
"""
|
310 |
+
# from IPython import embed; embed(); exit()
|
311 |
+
device = device or self._execution_device
|
312 |
+
|
313 |
+
# set lora scale so that monkey patched LoRA
|
314 |
+
# function of text encoder can correctly access it
|
315 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
316 |
+
self._lora_scale = lora_scale
|
317 |
+
|
318 |
+
if prompt is not None and isinstance(prompt, str):
|
319 |
+
batch_size = 1
|
320 |
+
elif prompt is not None and isinstance(prompt, list):
|
321 |
+
batch_size = len(prompt)
|
322 |
+
else:
|
323 |
+
batch_size = prompt_embeds.shape[0]
|
324 |
+
|
325 |
+
# Define tokenizers and text encoders
|
326 |
+
tokenizers = [self.tokenizer]
|
327 |
+
text_encoders = [self.text_encoder]
|
328 |
+
|
329 |
+
if prompt_embeds is None:
|
330 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
331 |
+
prompt_embeds_list = []
|
332 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
333 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
334 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
335 |
+
|
336 |
+
text_inputs = tokenizer(
|
337 |
+
prompt,
|
338 |
+
padding="max_length",
|
339 |
+
max_length=256,
|
340 |
+
truncation=True,
|
341 |
+
return_tensors="pt",
|
342 |
+
).to('cuda')
|
343 |
+
output = text_encoder(
|
344 |
+
input_ids=text_inputs['input_ids'] ,
|
345 |
+
attention_mask=text_inputs['attention_mask'],
|
346 |
+
position_ids=text_inputs['position_ids'],
|
347 |
+
output_hidden_states=True)
|
348 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
349 |
+
pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
350 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
351 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
352 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
353 |
+
|
354 |
+
prompt_embeds_list.append(prompt_embeds)
|
355 |
+
|
356 |
+
# prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
357 |
+
prompt_embeds = prompt_embeds_list[0]
|
358 |
+
|
359 |
+
# get unconditional embeddings for classifier free guidance
|
360 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
361 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
362 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
363 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
364 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
365 |
+
# negative_prompt = negative_prompt or ""
|
366 |
+
uncond_tokens: List[str]
|
367 |
+
if negative_prompt is None:
|
368 |
+
uncond_tokens = [""] * batch_size
|
369 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
370 |
+
raise TypeError(
|
371 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
372 |
+
f" {type(prompt)}."
|
373 |
+
)
|
374 |
+
elif isinstance(negative_prompt, str):
|
375 |
+
uncond_tokens = [negative_prompt]
|
376 |
+
elif batch_size != len(negative_prompt):
|
377 |
+
raise ValueError(
|
378 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
379 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
380 |
+
" the batch size of `prompt`."
|
381 |
+
)
|
382 |
+
else:
|
383 |
+
uncond_tokens = negative_prompt
|
384 |
+
|
385 |
+
negative_prompt_embeds_list = []
|
386 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
387 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
388 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
389 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
390 |
+
|
391 |
+
max_length = prompt_embeds.shape[1]
|
392 |
+
uncond_input = tokenizer(
|
393 |
+
uncond_tokens,
|
394 |
+
padding="max_length",
|
395 |
+
max_length=max_length,
|
396 |
+
truncation=True,
|
397 |
+
return_tensors="pt",
|
398 |
+
).to('cuda')
|
399 |
+
output = text_encoder(
|
400 |
+
input_ids=uncond_input['input_ids'] ,
|
401 |
+
attention_mask=uncond_input['attention_mask'],
|
402 |
+
position_ids=uncond_input['position_ids'],
|
403 |
+
output_hidden_states=True)
|
404 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
405 |
+
negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
406 |
+
|
407 |
+
if do_classifier_free_guidance:
|
408 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
409 |
+
seq_len = negative_prompt_embeds.shape[1]
|
410 |
+
|
411 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
412 |
+
|
413 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
414 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
415 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
416 |
+
)
|
417 |
+
|
418 |
+
# For classifier free guidance, we need to do two forward passes.
|
419 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
420 |
+
# to avoid doing two forward passes
|
421 |
+
|
422 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
423 |
+
|
424 |
+
# negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
425 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
426 |
+
|
427 |
+
bs_embed = pooled_prompt_embeds.shape[0]
|
428 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
429 |
+
bs_embed * num_images_per_prompt, -1
|
430 |
+
)
|
431 |
+
if do_classifier_free_guidance:
|
432 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
433 |
+
bs_embed * num_images_per_prompt, -1
|
434 |
+
)
|
435 |
+
|
436 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
437 |
+
|
438 |
+
|
439 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
440 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
441 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
442 |
+
|
443 |
+
if not isinstance(image, torch.Tensor):
|
444 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
445 |
+
|
446 |
+
image = image.to(device=device, dtype=dtype)
|
447 |
+
if output_hidden_states:
|
448 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
449 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
450 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
451 |
+
torch.zeros_like(image), output_hidden_states=True
|
452 |
+
).hidden_states[-2]
|
453 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
454 |
+
num_images_per_prompt, dim=0
|
455 |
+
)
|
456 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
457 |
+
else:
|
458 |
+
image_embeds = self.image_encoder(image).image_embeds
|
459 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
460 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
461 |
+
|
462 |
+
return image_embeds, uncond_image_embeds
|
463 |
+
|
464 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
465 |
+
def prepare_ip_adapter_image_embeds(
|
466 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
467 |
+
):
|
468 |
+
image_embeds = []
|
469 |
+
if do_classifier_free_guidance:
|
470 |
+
negative_image_embeds = []
|
471 |
+
if ip_adapter_image_embeds is None:
|
472 |
+
if not isinstance(ip_adapter_image, list):
|
473 |
+
ip_adapter_image = [ip_adapter_image]
|
474 |
+
|
475 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
476 |
+
raise ValueError(
|
477 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
478 |
+
)
|
479 |
+
|
480 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
481 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
482 |
+
):
|
483 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
484 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
485 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
486 |
+
)
|
487 |
+
|
488 |
+
image_embeds.append(single_image_embeds[None, :])
|
489 |
+
if do_classifier_free_guidance:
|
490 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
491 |
+
else:
|
492 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
493 |
+
if do_classifier_free_guidance:
|
494 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
495 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
496 |
+
image_embeds.append(single_image_embeds)
|
497 |
+
|
498 |
+
ip_adapter_image_embeds = []
|
499 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
500 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
501 |
+
if do_classifier_free_guidance:
|
502 |
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
503 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
504 |
+
|
505 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
506 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
507 |
+
|
508 |
+
return ip_adapter_image_embeds
|
509 |
+
|
510 |
+
|
511 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
512 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
513 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
514 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
515 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
516 |
+
# and should be between [0, 1]
|
517 |
+
|
518 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
519 |
+
extra_step_kwargs = {}
|
520 |
+
if accepts_eta:
|
521 |
+
extra_step_kwargs["eta"] = eta
|
522 |
+
|
523 |
+
# check if the scheduler accepts generator
|
524 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
525 |
+
if accepts_generator:
|
526 |
+
extra_step_kwargs["generator"] = generator
|
527 |
+
return extra_step_kwargs
|
528 |
+
|
529 |
+
def check_inputs(
|
530 |
+
self,
|
531 |
+
prompt,
|
532 |
+
height,
|
533 |
+
width,
|
534 |
+
callback_steps,
|
535 |
+
negative_prompt=None,
|
536 |
+
prompt_embeds=None,
|
537 |
+
negative_prompt_embeds=None,
|
538 |
+
pooled_prompt_embeds=None,
|
539 |
+
negative_pooled_prompt_embeds=None,
|
540 |
+
):
|
541 |
+
if height % 8 != 0 or width % 8 != 0:
|
542 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
543 |
+
|
544 |
+
if (callback_steps is None) or (
|
545 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
546 |
+
):
|
547 |
+
raise ValueError(
|
548 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
549 |
+
f" {type(callback_steps)}."
|
550 |
+
)
|
551 |
+
|
552 |
+
if prompt is not None and prompt_embeds is not None:
|
553 |
+
raise ValueError(
|
554 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
555 |
+
" only forward one of the two."
|
556 |
+
)
|
557 |
+
elif prompt is None and prompt_embeds is None:
|
558 |
+
raise ValueError(
|
559 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
560 |
+
)
|
561 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
562 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
563 |
+
|
564 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
565 |
+
raise ValueError(
|
566 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
567 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
568 |
+
)
|
569 |
+
|
570 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
571 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
572 |
+
raise ValueError(
|
573 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
574 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
575 |
+
f" {negative_prompt_embeds.shape}."
|
576 |
+
)
|
577 |
+
|
578 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
579 |
+
raise ValueError(
|
580 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
581 |
+
)
|
582 |
+
|
583 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
584 |
+
raise ValueError(
|
585 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
586 |
+
)
|
587 |
+
|
588 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
589 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
590 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
591 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
592 |
+
raise ValueError(
|
593 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
594 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
595 |
+
)
|
596 |
+
|
597 |
+
if latents is None:
|
598 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
599 |
+
else:
|
600 |
+
latents = latents.to(device)
|
601 |
+
|
602 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
603 |
+
latents = latents * self.scheduler.init_noise_sigma
|
604 |
+
return latents
|
605 |
+
|
606 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
607 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
608 |
+
|
609 |
+
passed_add_embed_dim = (
|
610 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
611 |
+
)
|
612 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
613 |
+
|
614 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
615 |
+
raise ValueError(
|
616 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
617 |
+
)
|
618 |
+
|
619 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
620 |
+
return add_time_ids
|
621 |
+
|
622 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
623 |
+
def upcast_vae(self):
|
624 |
+
dtype = self.vae.dtype
|
625 |
+
self.vae.to(dtype=torch.float32)
|
626 |
+
use_torch_2_0_or_xformers = isinstance(
|
627 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
628 |
+
(
|
629 |
+
AttnProcessor2_0,
|
630 |
+
XFormersAttnProcessor,
|
631 |
+
LoRAXFormersAttnProcessor,
|
632 |
+
LoRAAttnProcessor2_0,
|
633 |
+
),
|
634 |
+
)
|
635 |
+
# if xformers or torch_2_0 is used attention block does not need
|
636 |
+
# to be in float32 which can save lots of memory
|
637 |
+
if use_torch_2_0_or_xformers:
|
638 |
+
self.vae.post_quant_conv.to(dtype)
|
639 |
+
self.vae.decoder.conv_in.to(dtype)
|
640 |
+
self.vae.decoder.mid_block.to(dtype)
|
641 |
+
|
642 |
+
@torch.no_grad()
|
643 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
644 |
+
def __call__(
|
645 |
+
self,
|
646 |
+
prompt: Union[str, List[str]] = None,
|
647 |
+
height: Optional[int] = None,
|
648 |
+
width: Optional[int] = None,
|
649 |
+
num_inference_steps: int = 50,
|
650 |
+
denoising_end: Optional[float] = None,
|
651 |
+
guidance_scale: float = 5.0,
|
652 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
653 |
+
num_images_per_prompt: Optional[int] = 1,
|
654 |
+
eta: float = 0.0,
|
655 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
656 |
+
latents: Optional[torch.FloatTensor] = None,
|
657 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
658 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
659 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
660 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
661 |
+
|
662 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
663 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
664 |
+
|
665 |
+
output_type: Optional[str] = "pil",
|
666 |
+
return_dict: bool = True,
|
667 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
668 |
+
callback_steps: int = 1,
|
669 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
670 |
+
guidance_rescale: float = 0.0,
|
671 |
+
original_size: Optional[Tuple[int, int]] = None,
|
672 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
673 |
+
target_size: Optional[Tuple[int, int]] = None,
|
674 |
+
use_dynamic_threshold: Optional[bool] = False,
|
675 |
+
):
|
676 |
+
r"""
|
677 |
+
Function invoked when calling the pipeline for generation.
|
678 |
+
|
679 |
+
Args:
|
680 |
+
prompt (`str` or `List[str]`, *optional*):
|
681 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
682 |
+
instead.
|
683 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
684 |
+
The height in pixels of the generated image.
|
685 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
686 |
+
The width in pixels of the generated image.
|
687 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
688 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
689 |
+
expense of slower inference.
|
690 |
+
denoising_end (`float`, *optional*):
|
691 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
692 |
+
completed before it is intentionally prematurely terminated. For instance, if denoising_end is set to
|
693 |
+
0.7 and `num_inference_steps` is fixed at 50, the process will execute only 35 (i.e., 0.7 * 50)
|
694 |
+
Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
695 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
696 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
697 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
698 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
699 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
700 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
701 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
702 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
703 |
+
less than `1`).
|
704 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
705 |
+
The number of images to generate per prompt.
|
706 |
+
eta (`float`, *optional*, defaults to 0.0):
|
707 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
708 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
709 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
710 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
711 |
+
to make generation deterministic.
|
712 |
+
latents (`torch.FloatTensor`, *optional*):
|
713 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
714 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
715 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
716 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
717 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
718 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
719 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
720 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
721 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
722 |
+
argument.
|
723 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
724 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
725 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
726 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
727 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
728 |
+
The output format of the generate image. Choose between
|
729 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
730 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
731 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
732 |
+
callback (`Callable`, *optional*):
|
733 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
734 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
735 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
736 |
+
called at every step.
|
737 |
+
cross_attention_kwargs (`dict`, *optional*):
|
738 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
739 |
+
`self.processor` in
|
740 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
741 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
742 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
743 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
744 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
745 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
746 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
747 |
+
TODO
|
748 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
749 |
+
TODO
|
750 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
751 |
+
TODO
|
752 |
+
|
753 |
+
Examples:
|
754 |
+
|
755 |
+
Returns:
|
756 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
757 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
758 |
+
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
|
759 |
+
element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
760 |
+
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
761 |
+
"""
|
762 |
+
# 0. Default height and width to unet
|
763 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
764 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
765 |
+
|
766 |
+
original_size = original_size or (height, width)
|
767 |
+
target_size = target_size or (height, width)
|
768 |
+
|
769 |
+
# 1. Check inputs. Raise error if not correct
|
770 |
+
self.check_inputs(
|
771 |
+
prompt,
|
772 |
+
height,
|
773 |
+
width,
|
774 |
+
callback_steps,
|
775 |
+
negative_prompt,
|
776 |
+
prompt_embeds,
|
777 |
+
negative_prompt_embeds,
|
778 |
+
pooled_prompt_embeds,
|
779 |
+
negative_pooled_prompt_embeds,
|
780 |
+
)
|
781 |
+
|
782 |
+
# 2. Define call parameters
|
783 |
+
if prompt is not None and isinstance(prompt, str):
|
784 |
+
batch_size = 1
|
785 |
+
elif prompt is not None and isinstance(prompt, list):
|
786 |
+
batch_size = len(prompt)
|
787 |
+
else:
|
788 |
+
batch_size = prompt_embeds.shape[0]
|
789 |
+
|
790 |
+
device = self._execution_device
|
791 |
+
|
792 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
793 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
794 |
+
# corresponds to doing no classifier free guidance.
|
795 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
796 |
+
|
797 |
+
# 3. Encode input prompt
|
798 |
+
text_encoder_lora_scale = (
|
799 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
800 |
+
)
|
801 |
+
(
|
802 |
+
prompt_embeds,
|
803 |
+
negative_prompt_embeds,
|
804 |
+
pooled_prompt_embeds,
|
805 |
+
negative_pooled_prompt_embeds,
|
806 |
+
) = self.encode_prompt(
|
807 |
+
prompt,
|
808 |
+
device,
|
809 |
+
num_images_per_prompt,
|
810 |
+
do_classifier_free_guidance,
|
811 |
+
negative_prompt,
|
812 |
+
prompt_embeds=prompt_embeds,
|
813 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
814 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
815 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
816 |
+
lora_scale=text_encoder_lora_scale,
|
817 |
+
)
|
818 |
+
|
819 |
+
# 4. Prepare timesteps
|
820 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
821 |
+
|
822 |
+
timesteps = self.scheduler.timesteps
|
823 |
+
|
824 |
+
# 5. Prepare latent variables
|
825 |
+
num_channels_latents = self.unet.config.in_channels
|
826 |
+
latents = self.prepare_latents(
|
827 |
+
batch_size * num_images_per_prompt,
|
828 |
+
num_channels_latents,
|
829 |
+
height,
|
830 |
+
width,
|
831 |
+
prompt_embeds.dtype,
|
832 |
+
device,
|
833 |
+
generator,
|
834 |
+
latents,
|
835 |
+
)
|
836 |
+
|
837 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
838 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
839 |
+
|
840 |
+
# 7. Prepare added time ids & embeddings
|
841 |
+
add_text_embeds = pooled_prompt_embeds
|
842 |
+
add_time_ids = self._get_add_time_ids(
|
843 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
844 |
+
)
|
845 |
+
|
846 |
+
if do_classifier_free_guidance:
|
847 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
848 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
849 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
850 |
+
|
851 |
+
prompt_embeds = prompt_embeds.to(device)
|
852 |
+
add_text_embeds = add_text_embeds.to(device)
|
853 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
854 |
+
|
855 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
856 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
857 |
+
ip_adapter_image,
|
858 |
+
ip_adapter_image_embeds,
|
859 |
+
device,
|
860 |
+
batch_size * num_images_per_prompt,
|
861 |
+
do_classifier_free_guidance,
|
862 |
+
)
|
863 |
+
|
864 |
+
# 8. Denoising loop
|
865 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
866 |
+
|
867 |
+
# 7.1 Apply denoising_end
|
868 |
+
if denoising_end is not None:
|
869 |
+
num_inference_steps = int(round(denoising_end * num_inference_steps))
|
870 |
+
timesteps = timesteps[: num_warmup_steps + self.scheduler.order * num_inference_steps]
|
871 |
+
|
872 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
873 |
+
for i, t in enumerate(timesteps):
|
874 |
+
# expand the latents if we are doing classifier free guidance
|
875 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
876 |
+
|
877 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
878 |
+
|
879 |
+
# predict the noise residual
|
880 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
881 |
+
|
882 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
883 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
884 |
+
|
885 |
+
# import pdb; pdb.set_trace()
|
886 |
+
|
887 |
+
noise_pred = self.unet(
|
888 |
+
latent_model_input,
|
889 |
+
t,
|
890 |
+
encoder_hidden_states=prompt_embeds,
|
891 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
892 |
+
added_cond_kwargs=added_cond_kwargs,
|
893 |
+
return_dict=False,
|
894 |
+
)[0]
|
895 |
+
|
896 |
+
# perform guidance
|
897 |
+
if do_classifier_free_guidance:
|
898 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
899 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
900 |
+
if use_dynamic_threshold:
|
901 |
+
DynamicThresh = DynThresh(maxSteps=num_inference_steps, experiment_mode=0)
|
902 |
+
noise_pred = DynamicThresh.dynthresh(noise_pred_text,
|
903 |
+
noise_pred_uncond,
|
904 |
+
guidance_scale,
|
905 |
+
None)
|
906 |
+
|
907 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
908 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
909 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
910 |
+
|
911 |
+
# compute the previous noisy sample x_t -> x_t-1
|
912 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
913 |
+
|
914 |
+
# call the callback, if provided
|
915 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
916 |
+
progress_bar.update()
|
917 |
+
if callback is not None and i % callback_steps == 0:
|
918 |
+
callback(i, t, latents)
|
919 |
+
|
920 |
+
# make sureo the VAE is in float32 mode, as it overflows in float16
|
921 |
+
# torch.cuda.empty_cache()
|
922 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
923 |
+
self.upcast_vae()
|
924 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
925 |
+
|
926 |
+
|
927 |
+
if not output_type == "latent":
|
928 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
929 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
930 |
+
else:
|
931 |
+
image = latents
|
932 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
933 |
+
|
934 |
+
# image = self.watermark.apply_watermark(image)
|
935 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
936 |
+
|
937 |
+
# Offload last model to CPU
|
938 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
939 |
+
self.final_offload_hook.offload()
|
940 |
+
|
941 |
+
if not return_dict:
|
942 |
+
return (image,)
|
943 |
+
|
944 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
945 |
+
|
946 |
+
|
947 |
+
if __name__ == "__main__":
|
948 |
+
pass
|